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Unit I Introduction 

 

 Notion of an algorithm 

 

An algorithm is a sequence of unambiguous instructions for solving a problem,i.e.,for 
obtaining a required output for any legitimate input in a finite amount of time. 

 

 

Figure1.1the notion of the algorithm. 

 

It is a step by step procedure with the input to solve the problem in a finite amount of 

timeto obtain the required output. 

 

Thenotionofthealgorithmillustratessomeimportantpoints: 

• The non-ambiguity requirement for each step of an algorithm cannot be compromised. 

• The range of inputs for which an algorithm works has to be specified carefully. 

• The same algorithm can be represented in several different ways. 

• There may exist several algorithms for solving the same problem. 

• Algorithms forthesameproblemcanbebasedonverydifferentideasandcansolvethe problem 

with dramatically different speeds. 

 

Characteristicsofan algorithm: 

Input: zero/morequantitiesareexternallysupplied. 

Output: at least one quantity is produced. 

Definiteness: eachinstructionisclearand unambiguous. 

Finiteness: if the instructions of an algorithm is traced then for all cases the algorithm must 

terminates after a finite number of steps. 

Efficiency: every instruction must be very basic and runs in short time. 



  

  

 

 

Stepsforwritinganalgorithm: 

1. Analgorithmisaprocedure.ithastwoparts;thefirstpartisheadandthesecondpartis 

Body. 

2. Theheadsectionconsistsofkeywordalgorithmandnameofthealgorithmwith 

Parameterlist.e.g.algorithmname1(p1,p2,…,p3) 

Theheadsection alsohasthe following: 

//problemdescription: 

//input: 

//output: 

3. Inthebody ofanalgorithmvariousprogrammingconstructslikeif,for,whileandsome statements 

like assignments are used. 

4. Thecompoundstatementsmaybeenclosedwith{and}brackets.if,for,whilecanbe closed by 

endif, endfor, endwhile respectively. Proper indention is must for block. 

5. Commentsarewrittenusing//atthe beginning. 

6. Theidentifiershouldbeginbyaletterandnotbydigit.itcontainsalphanumericletters after first 

letter. No need to mention data types. 

7. Theleftarrow“←”usedasassignmentoperator.e.g.v←10 

8. Booleanoperators(true,false),logicaloperators(and,or,not)andrelational 

Operators(<,<=,>,>=,=,≠,<>)arealsoused. 

9. Inputand outputcanbe doneusing readandwrite. 

10. Array[],ifthen elsecondition,branchandloopcanbealsousedinalgorithm. 

 

Example: 

The greatest common divisor(gcd) of two nonnegative integers m and n (not-both-zero), 

denoted gcd(m, n), is defined as the largest integer that divides both m and n evenly, i.e., with a 

remainder of zero. 

 

Euclid’s algorithm is based on applying repeatedly the equality gcd(m, n) = gcd(n, m mod n), 

wheremmod n is theremainderofthedivision of mbyn, until m mod nis equal to 0.sincegcd(m, 0) = 

m, the last value of m is also the greatest common divisor of the initial m and n. 

Gcd(60,24)can be computedas follows:gcd(60,24)=gcd(24,12)=gcd(12,0)=12. 

 

Euclid’salgorithmforcomputinggcd(m, n)insimplesteps 

Step1ifn=0,returnthe valueofmastheanswerandstop;otherwise,proceedtostep2. 

Step2dividembynandassignthevalueofthe remainderto r. 

Step3assignthevalue ofntomandthevalueofrton.gotostep1. 

 

Euclid’salgorithmforcomputinggcd(m,n)expressedinpseudocode 

Algorithmeuclid_gcd(m,n) 

//computes gcd(m,n)byeuclid’salgorithm 

//input:twononnegative,not-both-zerointegers mandn 

//output:greatestcommondivisorofmandn 

Whilen≠0do 

R←mmodn 

m←n 

N←r 

Returnm 



  

  

 

 

 Fundamentalsofalgorithmicproblemsolving 

A sequence of steps involved in designing and analyzing an algorithm is shown in the figure 

Below. 

Figure1.2algorithm design and analysis process. 

 

(i) Understandingtheproblem 

• This is thefirst stepin designingof algorithm. 

• Read the problem’s description carefullyto understand the problem statement completely. 

• Ask questions for clarifying the doubts about the problem. 

• Identify the problemtypes anduse existingalgorithm tofind solution. 

• Input(instance)totheproblem andrangeoftheinput getfixed. 

 

(ii) decision making 

Thedecision makingisdoneon the following: 

(a) Ascertaining the capabilities of the computation al device 

• In random-access machine (ram), instructions are executed one after another (the 

central assumption is that one operation at a time). Accordingly, algorithmsdesigned 

to be executed on such machines are called sequential algorithms. 

• In some newer computers, operations are executed concurrently, i.e., in parallel. 
Algorithms that take advantage of this capability are called parallel algorithms. 

• Choiceofcomputationaldeviceslikeprocessorandmemoryismainlybasedon 

Spaceandtimeefficiency 

(b) Choosingbetweenexactandapproximateproblemsolving 

• Thenextprincipaldecisionistochoosebetweensolvingtheproblemexactlyor solving it 
approximately. 

• An algorithm used to solve the problem exactly and produce correct result is called 

an exact algorithm. 

• Iftheproblemissocomplexandnotabletogetexactsolution,thenwehaveto 

chooseanalgorithmcalledanapproximationalgorithm.i.e.,producesan 



  

  

 

 

Algorithms+DataStructures=Programs 

Flowchart Pseudocode NaturalLanguage 

AlgorithmSpecification 

Step1: Read the first number, say a. 

Step2: Read the first number, say b. 

Step3: Add the above two numbers and store the result in c.  

Step 4: Display the result from c. 

Approximate answer. E.g., extracting square roots, solving nonlinear equations, and 

evaluating definite integrals. 

(c) Algorithmdesigntechniques 

• An algorithm design technique (or “strategy” or “paradigm”) is a general approach 

to solving problems algorithmically that is applicable to a variety of problems from 
different areas of computing. 

• 

• Though algorithms and data structures are independent, but they are combined 

together to develop program. Hence the choice of proper data structure is required 

before designing the algorithm. 

• Implementation of algorithm is possible only with the help of algorithms and data 
structures 

• Algorithmic strategy / technique / paradigm are a general approach by which 

many problems can be solved algorithmically. E.g., brute force, divide and conquer, 

dynamic programming, greedy technique and so on. 

 

(iii) Methods of specifying an algorithm 

 

Therearethreewaystospecifyanalgorithm.they are: 

a. Naturallanguage 

b. Pseudocode 

c. Flowchart 
 

Figure1.3algorithm specifications 

 

Pseudocode and flowchart are the two options that are most widely used nowadays for specifying 

algorithms. 

 

a. Naturallanguage 

It is very simple and easy to specify an algorithm using natural language. But many times 

specification of algorithm by using natural language is not clear and thereby we get brief 

specification. 

Example:analgorithmtoperformadditionoftwo numbers. 

Such a specification creates difficulty while actually implementing it. Hence many programmers 

prefer to have specification of algorithm by means of pseudocode. 



  

  

 

 

Start 
Start 

Inputthevalueofa 

Inputthevalueofb 

ALGORITHMSum(a,b) 

//ProblemDescription:Thisalgorithmperformsadditionoftwo numbers 

//Input:Twointegersaandb 

//Output:Additionoftwo integers 

c←a+b 

returnc 

b. Pseudocode 

• Pseudocodeisamixtureofanaturallanguageandprogramminglanguageconstructs. Pseudocode 

is usually more precise than natural language. 

• For assignment operation left arrow “←”, for comments two slashes “//”,if condition, for, 

while loops are used. 

 

Thisspecification is moreuseful forimplementationofanylanguage. 

 

c. Flowchart 

In the earlier days of computing, the dominant method for specifying algorithms was a flowchart, 

this representation technique has proved to be inconvenient. 

Flowchart is agraphical representation of an algorithm. It is a amethod of expressing an algorithm 

by a collection of connected geometric shapes containing descriptions of the algorithm’s steps. 

Symbols example:additionofaandb 

 
Startstate 

 
Transition/assignment 

 
Processing/inputreadinputa

ndoutput 

Condition/decision 

 
Flowconnectivitys

topstate 

Figure1.4 flowchartsymbolsandexamplefortwointeger addition. 

 

 

(iv) Provinganalgorithm’scorrectness 

 

• Once an algorithmhasbeenspecifiedthenits correctnessmustbe proved. 

• An algorithm must yields a required result for every legitimate input in a finite amount 

oftime. 

Displaythevalueofc 

Stop 

c=a+b 

Stop 

   

 



  

  

 

 

• Forexample,thecorrectnessofeuclid’salgorithmforcomputingthegreatestcommon 

Divisors tems from the correctness of the equality gcd (m,n)= gcd(n,mmodn). 

• Acommon technique for proving correctness is to use mathematicalinductionbecausean 

Algorithm’siterationsprovideanaturalsequenceofstepsneeded forsuch proofs. 

• The notion of correctness for approximation algorithms is less straightforward than it is for 
exact algorithms. The error produced by the algorithm should not exceed a predefinedlimit. 

 

(v) Analyzingan algorithm 

• For an algorithm the most important is efficiency. In fact, there are two kinds of algorithm 

efficiency. They are: 

• Timeefficiency,indicating how fast the algorithm runs,and 

• Spaceefficiency, indicating how much extra memory it uses. 

• The efficiency of an algorithm is determined by measuring both time efficiency and 

spaceefficiency. 

• Sofactorstoanalyzeanalgorithmare: 

▪ Timeefficiencyof analgorithm 

▪ Spaceefficiencyofanalgorithm 

▪ Simplicityof analgorithm 

▪ Generalityof analgorithm 

 

(vi) Codinganalgorithm 

• The coding / implementation of an algorithm is done by a suitable programming 
languagelike c, c++, java. 

• The transition from an algorithm to a program can be done either incorrectly or very 

inefficiently. Implementing an algorithm correctly is necessary. The algorithm power 

should not reduced by inefficient implementation. 

• Standard tricks like computing a loop’s invariant (an expression that does not change its 

value) outside the loop, collecting common subexpressions, replacing 

expensiveoperationsbycheap ones,selectionofprogramminglanguageandso 

onshouldbeknownto the programmer. 

• Typically, such improvements can speed up a program only by a constant factor, whereas a 

better algorithm can make a difference in running time by orders of magnitude. But once 

an algorithm is selected, a 10–50% speedup may be worth an effort. 

• It is very essential to write an optimized code (efficient code)to reduce the burden of 
compiler. 

 

 

 Importantproblemtypes 

Themostimportantproblemtypesare: 

(i). Sorting 

(ii). Searching 

(iii). Stringprocessing 

(iv). Graphproblems 

(v). Combinatorialproblems 

(vi). Geometricproblems 

(vii). Numericalproblems 



  

  

 

 

 

 

(i) Sorting 

• The sorting problem is to rearrange the items of a given list in nondecreasing (ascending) 

order. 

• Sorting can be done on numbers,characters,strings or records. 

• To sort student records in alphabetical order of names or by student number or by 
studentgrade-point average. Such a specially chosen piece of information is called a key. 

• Analgorithmissaidto bein-placeifit doesnotrequireextramemory,e.g.,quicksort. 

• Asortingalgorithmiscalledstableifitpreservestherelativeorderofanytwoequal elements in its 

input. 

 

(ii) Searching 

• The searching problem deals with finding a given value,called a searchkey,in a givenset. 

• E.g.,ordinary linear search and fast binary search. 

 

(iii) Stringprocessing 

• Astringisasequenceofcharacters froman alphabet. 

• Strings comprise letters, numbers, and special characters; bit strings, which comprise zeros 
and ones; and genesequences, which can be modeled by strings of characters from the four- 

character alphabet {a, c, g, t}. It is very useful in bioinformatics. 

• Searchingfor agivenwordinatextiscalledstringmatching 

 

(iv) Graphproblems 

• Agraphisacollectionofpointscalledvertices, some of which are connected by line segments 

called edges. 

• Some of the graph problems are graph traversal, shortest path algorithm, topological sort, 

traveling salesman problem and the graph-coloring problem and so on. 

 

(v) Combinatorialproblems 

• Theseareproblems that ask, explicitlyorimplicitly, to finda combinatorial object suchas a 

permutation, a combination, or a subset that satisfies certain constraints. 

• A desired combinatorial object may also be required to have some additional property suchs 
a maximum value or a minimum cost. 

• Inpractical,thecombinatorialproblemsarethemostdifficultproblemsincomputing. 

• Thetravelingsalesmanproblemandthegraphcoloringproblemareexamplesof 

Combinatorial problems. 

 

(vi) Geometricproblems 

• Geometricalgorithmsdealwithgeometricobjectssuchaspoints,lines,and polygons. 

• Geometricalgorithmsareusedincomputergraphics,robotics,and tomography. 

• Theclosest-pairproblemandtheconvex-hullproblemarecomesunderthiscategory. 

 

(vii) Numericalproblems 

• Numericalproblemsareproblemsthatinvolvemathematicalequations,systemsof equations, 

computing definite integrals, evaluating functions, and so on. 

• Themajorityof such mathematical problemscanbesolved only approximately. 
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 Fundamentalsoftheanalysisofalgorithmefficiency 

The efficiency of an algorithm can be in terms of time and space. The algorithm efficiency 

can be analyzed by the following ways. 

a. Analysisframework. 

b. Asymptoticnotationsandits properties. 

c. Mathematicalanalysisforrecursive algorithms. 

d. Mathematicalanalysisfornon-recursivealgorithms. 

 

Analysis framework 

Therearetwo kindsofefficienciesto analyzetheefficiencyofanyalgorithm. They are: 

• Timeefficiency,indicatinghow fastthealgorithmruns,and 

• Spaceefficiency,indicatinghow muchextramemoryit uses. 

 

Thealgorithmanalysisframeworkconsistsofthe following: 

• Measuringaninput’ssize 

• Units formeasuringrunningtime 

• Ordersofgrowth 

• Worst-case,best-case,andaverage-caseefficiencies 

 

(i) Measuringaninput’ssize 

• An algorithm’s efficiency is defined as a function of some parameter n indicating the 

algorithm’s input size. In most cases, selecting such a parameter is quite straightforward.for 

example, it will be the size of the list for problems of sorting, searching. 

• For the problem of evaluating a polynomialp(x) = anx
n+ . . . + a0 of degree n, the size ofthe 

parameter will be the polynomial’s degree or the number of its coefficients, which is larger 

by 1 than its degree. 

• In computing the product of two n × n matrices, the choice of a parameter indicating an 
input size does matter. 

• Consider a spell-checking algorithm. If the algorithm examines individual characters of its 

input, then the size is measured by the number of characters. 

• In measuring input size for algorithms solving problems such as checking primality of a 

positive integer n. The input is just one number. 

• Theinputsizebythe numberb ofbitsin then’sbinaryrepresentationis b=(log2n)+1. 

 

(ii) Unitsformeasuringrunning time 

Some standard unit of time measurement such as a second, or millisecond, and so on can be 

used to measure the running time of a program after implementing the algorithm. 

Drawbacks 

• Dependenceonthespeedofaparticular computer. 

• Dependenceonthequalityof aprogramimplementingthe algorithm. 

• Thecompilerusedingeneratingthemachinecode. 

• Thedifficultyof clockingtheactual runningtimeof theprogram. 

So,weneedmetrictomeasureanalgorithm’sefficiencythatdoesnotdependonthese 

Extraneousfactors. 

Onepossibleapproachistocountthenumberoftimeseachofthealgorithm’soperations 

Isexecuted.thisapproachisexcessivelydifficult. 

Themostimportantoperation(+,-,*,/)ofthealgorithm,calledthebasicoperation. 

Computingthenumberoftimesthebasicoperationisexecutediseasy.thetotalrunningtimeis 



  

  

 

 

(iii) Ordersof growth 

• A difference in running times on small inputs is not what really distinguishes efficient 

algorithms from inefficient ones. 

• For example, the greatest common divisor of two small numbers, it is not immediatelyclear 
how much more efficient euclid’s algorithm is compared to the other algorithms, the 

difference in algorithm efficiencies becomes clear for larger numbers only. 

• Forlargevaluesofn,itisthefunction’sorderofgrowththatcountsjustlikethetable1.1, 

Whichcontainsvaluesofafewfunctions particularlyimportantforanalysisofalgorithms. 

 

Table1.1values(approximate)ofseveralfunctionsimportantforanalysisofalgorithms 

 

N √𝑛 Log2n N N log2n N2 N3 2n 
N! 

1 1 0 1 0 1 1 2 1 

2 1.4 1 2 2 4 4 4 2 

4 2 2 4 8 16 64 16 24 

8 2.8 3 8 2.4•101 64 5.1•102 2.6•102 4.0•104 

10 3.2 3.3 10 3.3•101 102 103 103 3.6•106 

16 4 4 16 6.4•101 2.6•102 4.1•103 6.5•104 2.1•1013 

102 10 6.6 102 6.6•102 104 106 1.3•1030 9.3•10157 

103 31 10 103 1.0•104 106 109  

Very big 
computation 

104 102 13 104 1.3•105 108 1012 

105 3.2•102 17 105 1.7•106 1010 1015 

106 103 20 106 2.0•107 1012 1018 

 

(iv) Worst-case,best-case,andaverage-caseefficiencies 

consider sequential search algorithm some search key k 

algorithm sequentialsearch(a[0..n - 1], k) 

//searchesforagivenvalueinagivenarraybysequentialsearch 

//input:anarraya[0..n-1]andasearchkeyk 

//output:theindex of thefirst element inathatmatches kor-1 ifthereareno 

// matchingelements 

I ←0 

Whilei<nanda[i]≠kdo 

I←i+1 

ifi<nreturni 

else return -1 

Clearly,therunningtimeofthisalgorithmcanbe quitedifferentforthesamelistsizen. 

 

In the worst case, there is no matching of elements or the first matching element can found 

at last on the list. In the best case, there is matching of elements at first on the list. 

 

Worst-caseefficiency 

• Theworst-caseefficiency ofanalgorithmisitsefficiencyfortheworstcaseinputofsizen. 

• Thealgorithm runs thelongest amongall possibleinputs ofthat size. 

• Fortheinputofsizen,therunningtimeiscworst(n)=n. 



  

  

 

 

Bestcaseefficiency 

• Thebest-caseefficiencyofanalgorithm isits efficiencyforthebestcaseinputof sizen. 

• Thealgorithm runs thefastest amongallpossible inputs ofthat sizen. 

• In sequential search, if we search a first element in list of size n. (i.e.first element equal toa 
search key),then the running time iscbest(n) = 1 

 

Averagecase efficiency 

• Theaveragecaseefficiencyliesbetweenbestcaseandworstcase. 

• Toanalyzethealgorithm’saveragecaseefficiency,wemustmakesomeassumptionsabout 

Possibleinputsofsizen. 

• Thestandardassumptionsarethat 

o Theprobabilityofasuccessfulsearchis equal top (0≤ p≤ 1)and 
o The probability of the first match occurring in the ith position of the list is the same 

for every i. 

Yet anothertypeofefficiencyis called amortized efficiency. It applies not to asinglerunof an 

algorithm but rather to a sequence of operations performed on the same data structure. 

 

 

 Asymptoticnotationsanditsproperties 

 

Asymptoticnotationisanotation,whichisusedtotakemeaningfulstatementaboutthe efficiency of 

a program. 

The efficiency analysisframeworkconcentrateson the order ofgrowthof analgorithm’s basic 

operation count as the principal indicator of the algorithm’s efficiency. 

Tocompareandranksuchordersofgrowth,computerscientistsusethreenotations,they 

Are: 

• O-bigoh notation 

• Ω-bigomega notation 

• Θ-bigthetanotation 

Lett(n)andg(n)canbeanynonnegativefunctionsdefinedonthesetofnaturalnumbers. 

Thealgorithm’srunningtimet(n)usuallyindicatedbyitsbasicoperationcountc(n),andg(n), 

Somesimplefunction tocomparewiththecount. 

 

Example1: 

 

 

 

 

 

 

Whereg(n)=n2. 



  

  

 

 

(i) O-big oh notation 

A function t(n) is said to be in o(g(n)), denoted 𝑡 (𝑛)∈𝑂(𝑔(𝑛)), if t (n) is bounded above by 

some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some 

nonnegative integer n0 such that 

𝑡(𝑛)≤𝑐𝑔(𝑛)𝑓𝑜𝑟𝑎𝑙𝑙𝑛≥𝑛0. 

Wheret(n)andg(n)arenonnegativefunctionsdefinedonthesetofnaturalnumbers. O = 

asymptotic upper bound = useful for worst case analysis = loose bound 

Figure1.5big-ohnotation: 𝑡(𝑛)∈𝑂(𝑔(𝑛)). 

 
Example2: provetheassertions100𝑛+5∈𝑂(𝑛2). 

Proof: 100n+5≤100n+ n (forall n≥5) 

=101n 

≤101n2(Ӭ𝑛≤𝑛2) 

Since,thedefinitiongivesusalotoffreedominchoosingspecificvaluesforconstantsc 

Andn0. Wehavec=101 and n0=5 

Example3: provetheassertions100𝑛+5∈𝑂(𝑛). 

Proof: 100n+5≤100n+ 5n (foralln≥1) 

=105n 

I.e., 100n+5≤105n 

i.e.,  t(n)≤ cg(n) 

ӫ100𝑛+5∈𝑂(𝑛)withc=105andn0=1 

 

(ii) Ω-bigomega notation 

A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) is bounded below by 

some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c 

and some nonnegative integer n0 such that 

T(n)≥cg(n) foralln ≥ n0. 

Wheret(n)andg(n)arenonnegativefunctionsdefinedonthesetofnaturalnumbers. 

Ω=asymptoticlowerbound=usefulforbestcaseanalysis= loose bound 



  

  

 

 

 

 

Figure1.6 big-omeganotation: t(n)∈Ω(g(n)). 

 

Example4: provetheassertionsn3+10n2+4n+2∈Ω(n2). 

Proof:n3+10n2+4n+2≥n2 (forall n≥0) 

I.e.,bydefinitiont(n)≥cg(n),wherec=1andn0=0 

 

(iii) Θ-big theta notation 

Afunctiont(n)issaid to beinθ(g(n)), denoted t(n)∈ θ(g(n)),ift(n)isboundedbothabove and 

below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive 

constants c1 and c2 and some nonnegative integer n0 such that 

C2g(n)≤ t (n) ≤c1g(n)forall n≥ n0. 

Wheret(n)andg(n)arenonnegativefunctionsdefinedonthesetofnaturalnumbers. 

Θ=asymptotictightbound =usefulforaverage caseanalysis 

Figure1.7 big-thetanotation:t(n)∈θ(g(n)). 

 

Example5: provetheassertions
1
𝑛(𝑛 −1)∈θ(𝑛2). 

2 

Proof:firstprovethe rightinequality(theupper bound): 
1𝑛(𝑛−1)=1𝑛2−1𝑛≤1𝑛2foralln≥0. 

2 2 2 2 

Second,weprovetheleft inequality(thelowerbound): 
1𝑛(𝑛−1)=1𝑛2−1𝑛≥1𝑛2−[1𝑛][1𝑛]foralln≥2. 
2 2 2 2 2 2 



  

  

 

 

ӫ 
1
𝑛(𝑛− 1)≥1𝑛2 

2 4 

I.e., 
1
𝑛2≤1𝑛(𝑛−1)≤1𝑛2 

4 2 2 
Hence,

1
𝑛(𝑛− 1)∈θ(𝑛2) 1 1

 

2 
, wherec2=

4
, c1= 

2
andn0=2 

Note:asymptotic notation can be thought of as "relational operators" for functions similar 
tothecorresponding relational operators for values. 

=⇒θ(), ≤⇒o(), ≥⇒ω(), <⇒o(), >⇒ω() 

 

Usefulpropertyinvolvingtheasymptoticnotations 

The following property, in particular, is useful in analyzing algorithms that comprise 

twoconsecutively executed parts. 

 

Theorem:ift1(n)∈o(g1(n))andt2(n)∈o(g2(n)),thent1(n)+t2(n)∈o(max{g1(n),g2(n)}). (the analogous 

assertions are true for the Ω and θ notations as well.) 

 

Proof: the proof extends to orders of growth the following simple fact about four arbitrary real 

numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}. 

Since t1(n) ∈o(g1(n)), there exist some positive constant c1 and some nonnegative integern1 

such that 

T1(n)≤ c1g1(n)forall n ≥n1. 

Similarly,sincet2(n)∈o(g2(n)), 

T2(n)≤ c2g2(n)forall n ≥n2. 

Letusdenotec3=max{c1,c2}andconsidern≥max{n1,n2}sothatwecanuse both 

inequalities. Adding them yields the following: 

T1(n)+t2(n) ≤c1g1(n)+c2g2(n) 

≤c3g1(n)+c3g2(n) 

=c3[g1(n)+g2(n)] 

≤c32max{g1(n), g2(n)}. 

 

Hence,t1(n)+t2(n)∈o(max{g1(n),g2(n)}),withtheconstantscandn0requiredbythe definition o 

being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively. 

Thepropertyimpliesthatthealgorithm’soverallefficiencywillbedeterminedbythepart 

Withahigherorderofgrowth,i.e.,itsleastefficient part. 

ӫt1(n)∈o(g1(n))andt2(n)∈o(g2(n)),thent1(n)+t2(n)∈ o(max{g1(n),g2(n)}). 

 

Basicrulesofsummanipulation 

Summationformulas 

 



  

  

 

 

 Mathematicalanalysisforrecursivealgorithms 

Generalplanforanalyzingthetimeefficiencyofrecursivealgorithms 

1. Decideon aparameter(orparameters)indicatinganinput’s size. 

2. Identifythealgorithm’sbasic operation. 

3. Check whether the number of times the basic operation is executed can vary on different 

inputs of the same size; if it can, the worst-case, average-case, and best-caseefficiencies 

must be investigated separately. 

4. Set up a recurrence relation, with an appropriate initial condition, for the number of times 

the basic operation is executed. 

5. Solvetherecurrenceor, atleast,ascertainthe orderofgrowthofitssolution. 

 

Example1:computethefactorialfunctionf(n)=n!Foranarbitrarynonnegativeintegern. 

Sincen!=1•....•(n− 1)•n=(n−1)!•n,forn≥1and0!=1by definition,wecancompute f(n) = f(n − 1) • n 

with the following recursive algorithm. (nd 2015) 

algorithm f(n) 

//computesn!Recursively 

//input:anonnegativeintegern 

//output:thevalue ofn! 

If n=0return1 

Elsereturnf(n−1)*n 

 

Algorithmanalysis 

• Forsimplicity,weconsidernitselfasanindicatorofthisalgorithm’sinputsize.i.e.1. 

• The basic operation of the algorithm is multiplication, whose number of executions we 

denotem(n).sincethefunctionf(n)iscomputed accordingtotheformula f(n)=f(n−1)•n for n >0. 

• Thenumberofmultiplicationsm(n)neededto computeitmust satisfythe equality 

M(n)=m(n-1) + 1 forn>0 
 

Tocompute
f(n-1) 

Tomultiply
f(n-1)byn 

M(n−1)multiplicationsarespenttocomputef(n−1),andonemoremultiplicationis needed to 

multiply the result by n. 

 

Recurrencerelations 

The last equation defines the sequence m(n) that we need to find. This equation defines 

m(n) not explicitly, i.e., as a function of n, but implicitlyas a function of its value at another point, 

namely n − 1. Such equations are called recurrence relations or recurrences. 

Solvetherecurrencerelation𝑀(𝑛)=𝑀(𝑛−1)+1,i.e.,tofindanexplicitformulafor 

M(n)intermsofnonly. 

To determine a solution uniquely, we need an initial condition that tells us the value with 

which the sequence starts. We can obtain this value by inspecting the condition that makes the 

algorithm stop its recursive calls: 

If n=0return1. 

This tells us two things. First, since the calls stop when n = 0, the smallest value of n for 

which this algorithm is executed and hence m(n) defined is 0. Second, by inspecting the 

pseudocode’s exiting line, we can see that when n = 0, the algorithm performs no multiplications. 



  

  

 

 

 

 

Thus,therecurrencerelationandinitialconditionforthealgorithm’snumberofmultiplications 

M(n): 

M(n)=m(n−1)+1forn>0, m(0) 

= 0 for n = 0. 

 

Methodofbackwardsubstitutions 

M(n) =m(n−1)+1 substitutem(n −1)=m(n −2)+1 

=[m(n−2)+1]+1 

=m(n −2)+2 substitutem(n −2)=m(n −3)+1 

=[m(n−3)+1]+2 

=m(n −3)+3 

… 

=m(n −i)+i 

… 

=m(n −n)+n 

=n. 

Thereforem(n)=n 

 

Example 2: consider educational workhorse of recursive algorithms: the tower of hanoi puzzle. 

We have n disks of different sizes that can slide onto any of three pegs. Considera (source), b 

(auxiliary), and c (destination). Initially, all the disks are on the first peg in order of size, the largest 

on the bottom and the smallest on top. The goal is to move all the disks to the third peg, using the 

second one as an auxiliary. 

Figure1.8recursivesolutiontothetowerofhanoipuzzle. 



  

 

 

 

Algorithmtoh(n,a,c,b) 

//movedisksfromsourcetodestinationrecursively 

//input: ndisksand3pegsa,b,andc 

//output:disksmovedtodestinationasinthesource order. 

Ifn=1 

 

Else 

Movediskfrom atoc 

 

Movetopn-1disksfromatobusingc toh(n - 1, a, 

b, c) 

Movetopn-1disksfrombtocusinga toh(n - 1, b, 

c, a) 

 

Algorithmanalysis 

Thenumberofmovesm(n)dependsonnonly,andwegetthefollowingrecurrenceequation for it:

 m(n) = m(n − 1) + 1+ m(n − 1) for n >1. 

Withtheobviousinitialconditionm(1)=1,wehavethefollowingrecurrencerelationforthe number of 

moves m(n): 

M(n)=2m(n−1)+1forn>1, m(1) = 1. 

Wesolvethisrecurrence bythesamemethodofbackward substitutions: 

M(n)=2m(n−1)+1 sub.m(n−1)=2m(n−2)+1 

=2[2m(n −2) +1]+ 1 

=22m(n −2) +2 +1 sub.m(n −2) =2m(n − 3)+ 1 

=22[2m(n −3) +1]+ 2 +1 

=23m(n −3) +22+2 +1 sub.m(n −3) =2m(n −4) +1 

=24m(n −4)+23+22 +2 +1 

… 

=2im(n−i)+2i−1+2i−2+. .. +2 +1=2im(n−i)+2i−1. 

… 

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, 

m(n)=2n−1m(n−(n−1))+2n−1 –1=2n−1m(1)+2n−1 −1=2n−1 +2n−1 −1=2n−1. 

Thus,wehavean exponentialtimealgorithm 

 

Example 3: an investigation of a recursive version of the algorithm which finds the number of 

binary digits in the binary representation of a positive decimal integer. 

 

Algorithmbinrec(n) 

//input:apositivedecimalintegern 

//output:thenumberofbinarydigitsinn’sbinaryrepresentation 

If n=1return1 

Elsereturnbinrec(𝖫n/2])+1 

 

Algorithmanalysis 

The number of additions made in computing binrec(𝖫n/2]) is a(𝖫n/2]), plus one more 

addition is made by the algorithm to increase the returned value by 1. This leads to the recurrence 

a(n) = a(𝖫n/2]) + 1 for n >1. 



  
 

 

Then,theinitial conditionisa(1)=0. 

Thestandardapproachto solvingsucharecurrenceistosolveitonlyfor n =2ka(2k) = 

a(2k−1) + 1 for k > 0, 

A(20)=0. 

 

Backwardsubstitutions 

A(2k)=a(2k−1)+1 substitutea(2k−1)=a(2k−2)+1 

=[a(2k−2)+1]+1=a(2k−2)+2 substitutea(2k−2)=a(2k−3)+1 

=[a(2k−3)+1]+2=a(2k−3)+3 ... 

. . . 

=a(2k−i)+i 

. . . 

=a(2k−k)+k. 

Thus,weendupwitha(2k)=a(1)+k=k,or,afterreturning totheoriginalvariablen=2kand hence k = log2 n, 

A(n)=log2 nϵθ(log2n). 

 

 

 

 Mathematicalanalysisfornon-recursivealgorithms 

Generalplanforanalyzingthetimeefficiencyofnonrecursivealgorithms 

1. Decideon aparameter(orparameters)indicatinganinput’s size. 

2. Identifythealgorithm’sbasicoperation(intheinnermostloop). 

3. Check whetherthe number of times thebasicoperation is executed depends onlyon thesize of 

an input. If it also depends on some additional property, the worst-case, average-case, and, 

if necessary, best-case efficiencies have to be investigated separately. 

4. Setupasumexpressingthenumberoftimesthealgorithm’sbasicoperationisexecuted. 

5. Using standard formulas and rules of sum manipulation either find a closed form formulafor 

the count or at the least, establish its order of growth. 

 

Example 1: consider the problem of finding the value of the largest element in a list of n 

numbers. Assume that the list is implemented as an array for simplicity. 

Algorithmmaxelement(a[0..n−1]) 

//determinesthevalueofthelargestelementinagivenarray 

//input:anarraya[0..n−1] ofreal numbers 

//output:thevalueofthelargestelementin a 

Maxval ←a[0] 

Fori ←1 to n −1 do 

Ifa[i]>maxval 

Maxval←a[i] 

Returnmaxval 

 

Algorithmanalysis 

• Themeasureofan input’ssizehereisthenumber ofelementsinthe array,i.e., n. 

• Therearetwooperations intheforloop’sbody: 

o Thecomparisona[i]>maxvaland 

o Theassignment maxval←a[i]. 



  
 

 

• The comparison operation is considered as the algorithm’s basic operation, because the 
comparison is executed on each repetition of the loop and not the assignment. 

• The number of comparisons will be the same for all arrays of size n; therefore, there is no 

need to distinguish among the worst, average, and best cases here. 

• Let c(n) denotes the number of times this comparison is executed. The algorithm makesone 

comparison on each execution of the loop, which is repeated for each value of theloop’s 

variable i within the bounds 1 and n − 1, inclusive. Therefore, the sum for c(n) is calculated 

as follows: 
𝑛−1 

𝑐(𝑛)=∑1 

𝑖=1 

I.e.,sumup1 inrepeated n-1 times 
𝑛−1 

𝑐(𝑛)=∑1=𝑛−1∈θ(n) 

𝑖=1 

 
Example2:considertheelementuniquenessproblem:checkwhetheralltheelementsina given array of n 

elements are distinct. 

Algorithmuniqueelements(a[0..n−1]) 

//determineswhetherall theelementsinagivenarrayaredistinct 

//input:an arraya[0..n−1] 

//output:returns “true”ifallthe elementsinaaredistinct and“false” otherwise 

Fori ←0 to n −2 do 

Forj ←i +1 to n −1 do 

Ifa[i]=a[j]returnfalse 

Returntrue 

 

Algorithmanalysis 

• Thenatural measureof theinput’ssizehereisagainn (thenumberofelementsin the array). 

• Sincetheinnermostloopcontainsasingleoperation(thecomparisonoftwoelements),we 

Shouldconsideritasthe algorithm’sbasic operation. 

• The number of element comparisons depends not only on n but also on whether there are 

equal elements in the array and, if there are, which array positions they occupy. We will 

limit our investigation to the worst case only. 

• One comparison is made for each repetition of theinnermost loop, i.e., for each value of the 
loop variable j between its limits i + 1 and n − 1; this is repeated for each value of the outer 

loop, i.e., for each value of the loop variable i between its limits 0 and n − 2. 

•  
 

Example3:considermatrixmultiplication.giventwon× nmatricesa andb,findthe time 

efficiencyofthedefinition-basedalgorithmforcomputingtheirproductc=ab.bydefinition,c 



  
 

 

Isann×nmatrix whoseelementsarecomputed asthescalar(dot)productsof therowsofmatrix a and the 

columns of matrix b: 

Wherec[i,j]=a[i,0]b[0,j]+...+a[i,k]b[k,j]+...+a[i,n−1]b[n−1,j]forevery pairof indices 0 ≤ i, j ≤ n − 1. 

 

Algorithmmatrixmultiplication(a[0..n−1,0..n−1],b[0..n−1,0..n−1]) 

//multipliestwosquarematricesofordernbythedefinition-basedalgorithm 

//input:twon×nmatricesaandb 

//output:matrixc=ab 

Fori ←0 to n −1 do 

Forj ←0to n −1 do 

C[i, j]←0.0 

Fork←0 to n − 1 do 

C[i,j]←c[i,j ]+a[i, k]∗b[k, j] 

Returnc 

Algorithmanalysis 

• Aninput’ssizeismatrixordern. 

• There are two arithmetical operations (multiplication and addition) in the innermost loop. 

But we consider multiplication as the basic operation. 

• Let us set up a sum for the total number of multiplications m(n) executed by the algorithm. 

Since this count depends only on the size of the input matrices, we do not have toinvestigate 

the worst-case, average-case, and best-case efficiencies separately. 

• There is just one multiplication executed on each repetition of the algorithm’s innermost 
loop, which is governed by the variable k ranging from the lower bound 0 to the upper 

bound n − 1. 

• Therefore, the number of multiplications made for every pair of specific values of variablesi 

and j is 

Thetotalnumberofmultiplicationsm(n)isexpressedbythefollowingtriplesum: 

 

Now,wecan computethis sum byusingformula(s1) andrule (r1) 

 

 

. 

Therunningtimeofthealgorithmonaparticularmachinem,wecandoit bytheproduct if we 

consider, time spent on the additions too, then the total time on the machine is 



  
 

 

Example4thefollowingalgorithmfindsthenumberofbinarydigitsinthebinary representation of a 

positive decimal integer. •algorithm 

binary(n) 

//input:apositivedecimalintegern 

//output:thenumberofbinarydigitsinn’sbinaryrepresentation count ←1 

Whilen>1do 

Count←count+1 n←𝖫n/2] 

Returncount 

Algorithmanalysis 

• Aninput’ssizeisn. 

• Theloop variabletakes ononlyafew valuesbetween itslower and upperlimits. 

• Sincethevalueofnisabouthalvedoneachrepetitionoftheloop,theanswershouldbe about log2 n. 

• Theexact formulafor the numberof times. 

• Thecomparison𝑛>1willbeexecutedisactually𝖫log2n]+1. 



 

 

Unitiibruteforceanddivide-and-conquer 

Bruteforce 

Brute force is a straightforward approach to solving a problem, usually directly based 

onthe problem statement and definitions of the concepts involved. 

Selectionsort,bubblesort,sequentialsearch,stringmatching,depth-firstsearchand breadth-first 

search, closest-pair and convex-hull problems can be solved by brute force. 

Examples: 

1. Computingan: a * a* a* … * a(n times) 

2. Computingn! : then! Can becomputed as n*(n-1)* … *3*2*1 

3. Multiplicationoftwomatrices:c=ab 

4. Searchingakeyfromlistofelements(sequentialsearch) 

advantages: 

1. Bruteforceis applicable to averywidevarietyof problems. 

2. Itisveryusefulforsolvingsmallsizeinstancesofaproblem,eventhoughitis inefficient. 

3. The brute-force approach yields reasonable algorithms of at least some practical 

valuewith no limitation on instance size for sorting, searching, and string matching. 

Selectionsort 

• First scan the entire given list to find its smallest element and exchange it with the first 

element, putting the smallest element in its final position in the sorted list. 

• Thenscanthelist,startingwiththesecondelement,tofindthesmallestamongthelastn −1 elements 

and exchange it with the second element, putting the second smallest element inits final 

position in the sorted list. 

• Generally, on the ith pass through the list, which we number from 0 to n − 2, the algorithm 

searches for the smallest item among thelast n −i elements and swaps it with ai: 

A0 ≤a1≤. .. ≤ai–1|ai, .. ., amin,. .. ,an–1 

Intheir finalpositions|thelast n –i elements 

• Aftern −1 passes, the list issorted. 

Algorithmselectionsort(a[0..n−1]) 

//sortsagivenarraybyselectionsort 

//input:anarraya[0..n−1]oforderableelements 

//output:arraya[0..n−1] sortedinnondecreasingorder 

Fori ← 0 to n −2 do 

Min ← i 

Forj ←i +1 to n −1 do 

If a[j]<a[min]min←j 

Swapa[i]anda[min] 

|89  45  68  90  29 34 17 

17 | 45  68  90  29 34 89 

17  29 | 68  90  45 34 89 

17  29  34 | 90  45 68 89 

17  29  34  45 | 90 68 89 

17  29  34  45  68 |90 89 



 

 

17 29 34 45 68 89 |90 

Thesortingof list 89, 45,68, 90, 29, 34, 17 isillustrated with theselection sort algorithm. 

 

The analysis of selection sort is straightforward. The input size is given by the number of 

elements n; the basic operation is the key comparison𝐴[j ] < 𝐴[𝑚𝑖𝑛]. The number of times it is 

executed depends only on the array size and is given by the following sum: 
N−2 N−

1 
N−2 N−2 

𝐶(𝑛)=∑∑1=∑[(n−1)−(i+1)+1]=∑(n−1−i)= 
(n −1)n 

 
 

2 
I=0j=i+1 I=0 I=0 

Thus,selectionsortisaθ(n2)algorithmonallinputs. 

Note:thenumberofkeyswaps is onlyθ(n), or,morepreciselyn– 1. 

 

Bubblesort 

The bubble sorting algorithm is to compare adjacent elements of the list and exchange them 

if they are out of order. By doing it repeatedly, we end up “bubbling up” the largest element to the 

last position on the list. The next pass bubbles up the second largest element, and so on, until 

aftern−1passesthelistissorted.passi(0≤i≤n−2)ofbubblesortcanberepresentedbythe 
? 

Following:a0,...,aj⫘ aj+1,...,an−i−1|an−i≤...≤an−1 

Algorithmbubblesort(a[0..n−1]) 

//sortsa given arraybybubblesort 

//input:anarraya[0..n−1]oforderableelements 

//output:arraya[0..n−1] sortedinnondecreasingorder 

Fori ← 0 to n −2 do 

Forj ← 0 to n −2 −i do 

Ifa[j+1]<a[j]swapa[j]anda[j+1] 

Theactionofthe algorithmonthelist 89,45, 68,90, 29,34,17 isillustratedasan example. 

etc. 

The number of key comparisons for the bubble-sort version given above is the same for all arraysof 

size n; it is obtained by a sum that is almost identical to the sum for selection sort: 

N−2 N−2−i N−2 N−2 (n −1)n 
𝐶(𝑛)=∑ ∑1=∑[(n−2−i)−0+1]=∑(n−1−i)= 

2
 

I=0 J=i+1 I=0 I=0 

The number of key swaps, however, depends on the input. In the worst case of 

decreasingarrays, it is the same as the number of key comparisons. 

𝐶worst(𝑛)∈θ(n2) 



 

 

 Closest-pairandconvex-hullproblems 

Weconsiderastraightforwardapproach(bruteforce)totwowell-known problemsdealing with a 

finite set of points in the plane. These problems are very useful in important applied areas like 

computational geometry and operations research. 

 

Closest-pairproblem 

Theclosest-pairproblem findsthetwoclosestpointsinasetofnpoints.itisthesimplestof a 

varietyof problems in computational geometry that deals with proximity of points in the plane or 

higher-dimensional spaces. 

Considerthetwo-dimensional caseof the closest-pairproblem. The points are specified in a 

standard fashion by their (x, y) cartesian coordinates and that the distance between two pointspi(xi, 

yi) and pj(xj, yj ) is the standard euclidean distance. 
 

𝑑(𝑝i,𝑝j)=√(xi−xj)2+(yi−yj)2 

The following algorithm computes the distance between each pair of distinct points and 

finds a pair with the smallest distance. 

 

Algorithmbruteforceclosestpair(p) 

//findsdistancebetweentwo closestpoints inthe planebybruteforce 

//input:alist pofn(n≥2)pointsp1(x1,y1),..., pn(xn,yn) 

//output:thedistancebetween theclosest pairofpoints 

D←∞ 

Fori ←1 ton −1 do 

Forj ←i +1 ton do 

D←min(d,sqrt((xi−xj)
2+(yi−yj )

2))//sqrtissquareroot 

Returnd 

The basic operation of the algorithm will be squaring a number. The number of times it will 

be executed can be computed as follows: 

 

𝑛−1 

𝐶(𝑛)=∑. 

𝑖=1 

𝑛 

∑ 2 

J=(𝑖+1) 

𝑛−1 

=2∑(n−i) 

𝑖=1 

=2[(n −1)+(n−2)+. . .+1] 

=(n−1)n∈θ(n2). 

Ofcourse,speedinguptheinnermostloopofthealgorithmcouldonlydecreasethe 

Algorithm’srunningtime bya constantfactor, butitcannotimproveitsasymptoticefficiencyclass. 



 

 

Convex-hullproblem 

convex set 

Asetofpoints(finiteorinfinite)intheplaneiscalledconvexifforanytwopointspandq 

Intheset,the entireline segmentwiththeendpointsatpand qbelongstothe set. 

 

 

 

 

 

 

(a) (b) 

Figure2.1(a)convexsets.(b)setsthatarenotconvex. 

 

All the sets depicted in figure 2.1 (a) are convex, and so are a straight line, a triangle, a 

rectangle, and, more generally, any convex polygon, a circle, and the entire plane. 

On the other hand, the sets depicted in figure 2.1 (b), any finite set of two or more distinct 

points, the boundary of any convex polygon, and a circumference are examples of sets that are not 

convex. 

Take a rubber band and stretch it to include all the nails, then let it snap into place. The 

convex hull is the area bounded by the snapped rubber band as shown in figure 2.2 
 

Figure2.2rubber-bandinterpretationoftheconvexhull. 

 

Convexhull 

The convex hull of a set s of points is the smallest convex set containing s. (the smallest 

convex hull of s must be a subset of any convex set containing s.) 

If s is convex, its convex hull is obviouslys itself. If s is a set of two points, its convex hull 

is the line segment connecting these points. If s is a set of three points not on the same line, its 

convex hull is thetrianglewith thevertices at thethreepoints given; ifthethreepoints do lieonthe same 

line, the convex hull is the line segment with its endpoints at the two points that are farthest apart. 

For an example of the convex hull for a larger set, see figure 2.3. 



 

 

P7 
P6 

P8 P2 

P4 

Theorem 

The convex hull of any set s of n>2 points not all on the same line is a convex polygon 

with the vertices at some of the points of s. (if all the points do lie on the same line, the polygon 

degenerates to a line segment but still with the endpoints at two points of s.) 
 

 

 

 

 

 

 

 

P5 
 

P3 

 

P1 

Figure 2.3 the convex hull for this set of eight points is the convex polygon with vertices at p1, p5, 

p6, p7, and p3. 

 

The convex-hull problem isthe problem of constructingthe convex hull for a given set s of n 

points. To solve it, we need to find the points that will serve as the vertices of the polygon in 

question. Mathematicians call the vertices of such a polygon “extreme points.” By definition, an 

extreme point of a convex set is a point of this set that is not a middle point of any line segmentwith 

endpoints in the set. For example, the extreme points of a triangle are its three vertices, the extreme 

points of a circle are all the points of its circumference, and the extreme points of the convex hull of 

the set of eight points in figure 2.3 are p1, p5, p6, p7, and p3. 

 

Application 

Extremepointshaveseveralspecialpropertiesotherpointsofaconvexsetdonothave.one of them 

is exploited bythe simplexmethod, thisalgorithm solves linear programming problems. 

We are interested in extreme points because their identification solves the convex-hull 

problem.actually, tosolvethisproblem completely,weneed toknow abit morethanjustwhich of n 

points of a given set are extreme points of the set’s convex hull. We need to know which pairs of 

points need to be connected to form the boundary of the convex hull. Note that this issue can alsobe 

addressed by listing the extreme points in a clockwise or a counterclockwise order. 

We can solve the convex-hull problem by brute-force manner. The convex hull problem is 

onewithnoobvious algorithmicsolution.thereis asimplebutinefficientalgorithmthatisbasedon the 

following observation about line segments making up the boundary of a convex hull: a line segment 

connecting two points pi and pj of a set of n points is a part of the convex hull’s boundary 

ifandonlyif allthe otherpointsofthe setlieon thesamesideof thestraightlinethroughthesetwo points. 

Repeating this test for every pair of points yields a list of line segments that make up the convex 

hull’s boundary. 

 

Facts 

Afew elementaryfactsfromanalyticalgeometryareneededtoimplementtheabove algorithm. 

• First, the straight line through two points (x1, y1), (x2, y2) in the coordinate plane can be defined 

by the equation ax + by = c,where a = y2 − y1, b = x1 − x2, c = x1y2 − y1x2. 

• Second, suchalinedivides theplaneintotwo half-planes: forall thepointsin oneofthem, ax+ by > c, 

while for all the points in the other, ax + by < c. (for the points on the line itself, of course, ax + 

by = c.) Thus, to check whether certain points lie on the same side of the line, we can 

simplycheck whether the expression ax + by − c has the same sign for each of these points. 



 

 

 

Timeefficiencyofthis algorithm. 

Time efficiency of this algorithmis in o(n3): for each of n(n − 1)/2 pairs of distinct points, 

we may need to find the sign of ax + by – c for each of the other n − 2 points. 

 

 

 Exhaustivesearch 

Fordiscreteproblems in which no efficient solution method is known,it might benecessary 

totesteachpossibilitysequentiallyinordertodetermineifitisthesolution. Suchexhaustiveexamination of 

all possibilities is known as exhaustivesearch, complete searchor direct search. 

Exhaustive search is simply a brute force approach to combinatorial problems 

(minimization or maximization of optimization problems and constraint satisfaction problems). 

Reason to choose brute-force / exhaustive search approach as an important algorithmdesign 

strategy 

1. First, unlike some of the other strategies, brute force is applicable to a very wide 

varietyofproblems. In fact,itseems tobetheonlygeneral approachforwhichitis more 

difficult to point out problems it cannot tackle. 

2. Second,forsomeimportant problems,e.g.,sorting,searching,matrix multiplication, 

stringmatching the brute-force approach yields reasonable algorithms of at least 

some practical value with no limitation on instance size. 

3. Third, the expense of designing a more efficient algorithm may be unjustifiable if 

only a few instances of a problem need to be solved and a brute-force algorithm can 

solve those instances with acceptable speed. 

4. Fourth, even if too inefficient in general, a brute-force algorithm can still be useful 

for solving small-size instances of a problem. 

Exhaustivesearchisappliedtotheimportantproblemslike 

• Travelingsalesman problem 

• Knapsackproblem 

• Assignmentproblem. 

 

 

 Travelingsalesmanproblem 

The traveling salesman problem (tsp) is one of the combinatorial problems. The problem 

asks to find the shortest tour through a given set of n cities that visits each city exactly once before 

returning to the city where it started. 

 

The problem can be conveniently modeled by a weighted graph, with the graph’s vertices 

representing the cities and the edge weights specifying the distances. Then the problem can be 

stated as the problem of finding the shortest hamiltonian circuit of the graph. (a hamiltonian circuit 

is defined as a cycle that passes through all the vertices of the graph exactly once). 

Ahamiltoniancircuitcanalsobedefinedasasequenceofn+1adjacentvertices vi0, vi1, . . . , vin−1, 

vi0, where the first vertex of the sequence is the same as the last one and all the other n − 1 vertices 

are distinct. All circuits start and end at one particular vertex. Figure 2.4 presents a small instance 

of the problem and its solution by this method. 



 

 

1 

 

 

Tour length 

A--->b--->c --->d--->a i=2 +8+1 +7 =18 

A--->b--->d--->c--->a i= 2 + 3 + 1 + 5 = 11 optimal 

A--->c--->b--->d--->a i=5 +8+3 +7 =23 

A--->c--->d--->b--->a i= 5 + 1 + 3 + 2 = 11 optimal 

A--->d--->b--->c--->a i=7 +3+8 +5 =23 

A--->d--->c --->b--->a i=7 +1+8 +2 =18 

Figure2.4 solutionto asmall instanceof thetravelingsalesmanproblem byexhaustive search. 

 

Time efficiency 

• Wecangetallthetoursbygeneratingallthepermutationsofn−1intermediatecities 

Fromaparticularcity..i.e.(n-1)! 

• Considertwointermediatevertices,say,bandc,andthenonlypermutationsinwhichb 

Precedesc.(thistrickimplicitlydefinesatour’s direction.) 

• An inspection of figure 2.4reveals three pairs of tours that differ only by their direction. 

Hence, we could cut the number of vertex permutations by half because cycle total 

lengths in both directions are same. 

• The total number of permutations needed is still 
2
(n − 1)!, which makes the exhaustive- 

search approach impractical for large n. It is useful for very small values of n. 
 

 

 Knapsackproblem 

Given n items ofknownweights w1, w2, . .. , wnand values v1, v2, . . . , vnand aknapsack of 

capacity w, find the most valuable subset of the items that fit into the knapsack. 

 

Realtime examples: 

• Athiefwho wantstostealthemostvaluableloot thatfitsinto hisknapsack, 

• Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation 

Withoutexceedingtheplane’scapacity. 

 

The exhaustive-search approach to this problem leads to generatingall the subsets of the set 

ofnitems given,computingthetotalweightofeachsubsetinordertoidentifyfeasiblesubsets(i.e., the ones 

with the total weight not exceeding the knapsack capacity), and finding a subset of the largest value 

among them. 



 

 

 

 

Figure2.5instanceoftheknapsackproblem. 

 

Subset Totalweight Total value 

Φ 0 $0 

{1} 7 $42 

{2} 3 $12 

{3} 4 $40 

{4} 5 $25 

{1, 2} 10 $54 

{1, 3} 11 Notfeasible 

{1, 4} 12 Notfeasible 

{2, 3} 7 $52 

{2, 4} 8 $37 

{3, 4} 9 $65(maximum-optimum) 

{1, 2, 3} 14 Notfeasible 

{1, 2, 4} 15 Notfeasible 

{1, 3, 4} 16 Notfeasible 

{ 2, 3, 4} 12 Notfeasible 

{1, 2, 3, 4} 19 Notfeasible 

Figure2.6knapsackproblem’ssolution byexhaustivesearch.the information abouttheoptimal 

Selectionisinbold. 

Time efficiency: as given in the example, the solution to the instance of figure 2.5 is given in 

figure 2.6. Since the number of subsets of an n-element set is 2n, the exhaustive search leads to a 

Ω(2n) algorithm, no matter how efficiently individual subsets are generated. 

 

Note:exhaustive search of both the traveling salesman and knapsack problems leads to extremely 

inefficient algorithms on every input. In fact, these two problems are the best-known examples of 

np-hard problems. No polynomial-time algorithm is known for any np-hard problem. Moreover, 

most computer scientists believe that such algorithms do not exist. Some sophisticated approaches 

like backtracking and branch-and-bound enable us to solve some instances but not all instances 

of these in less than exponential time. Alternatively, we can use one of many approximation 

algorithms. 



 

 

5 8 1 8 

 Assignmentproblem. 

There are n people who need to be assigned to execute n jobs, one person per job. (that is, 

each person is assigned to exactlyone job and each job is assigned to exactlyone person.) The cost 

thatwouldaccrueiftheithpersonisassignedtothejthjobisaknownquantity𝐶[𝑖,j]foreachpair 

𝑖,j=1,2,...,𝑛.theproblemistofindanassignmentwiththeminimumtotalcost. 

Assignment problem solved byexhaustive search is illustrated with an example as shown in 

figure 2.8. A small instance of this problem follows, with the table entries representing the 

assignment costs c[i, j]. 

 Job1 Job2 Job3 Job4 

Person1 9 2 7 8 

Person2 6 4 3 7 

Person3 5 8 1 8 

Person4 7 6 9 4 

Figure2.7instanceofanassignmentproblem. 

Aninstanceof theassignment problemis completelyspecifiedbyitscostmatrixc. 

9 2 7 8 

𝐶=[6 4 3 7 

7 6 9 4 
The problem is to select one element in each row of the matrix so that all selected elements 

are in different columns and the total sum of the selected elements is the smallest possible. 

We can describe feasible solutions to the assignment problem as n-tuples <j1, . . . , jn> in 

which the ith component, 𝑖=1,...,𝑛, indicates the column of the element selected in the ith row 

(i.e.,thejobnumberassignedtotheithperson).forexample,forthecost matrixabove,<2,3,4,1> 

indicatestheassignmentofperson1tojob2,person2tojob3,person3tojob4,andperson4to 

Job1. Similarlywecanhave4!=4 ·3·2·1=24,𝑖.𝑒.,24permutations. 

The requirements of the assignment problem imply that there is a one-to-one 

correspondence between feasible assignments and permutations of the first n integers. Therefore, 

the exhaustive-search approach to the assignment problem would require generating all the 

permutationsofintegers 1,2,...,𝑛, computingthetotal cost ofeach assignment bysummingup the 

corresponding elements of the cost matrix, and finally selecting the one with the smallest sum. A 

few first iterations of applying this algorithm to the instance given above are given below. 

 

<1,2, 3, 4> 

<1,2, 4, 3> 

<1,3, 2, 4> 

Cost= 9 +4 +1+ 4 =18 

Cost= 9 +4 +8+9 =30 

Cost= 9 +3 +8+4 =24 

 <2, 1, 3, 4> 

<2,1, 4, 3> 

<2,3, 1, 4> 

Cost= 2+ 6 +1 + 4= 13(min) 

Cost= 2 +6 +8+9 =25 

Cost= 2 +3 +5+4 =14 

<1,3, 4, 2> 

<1,4, 2, 3> 

Cost= 9 +3 +8+6 =26 

Cost= 9 +7 +8+9 =33 

 <2,3, 4, 1> 

<2,4, 1, 3> 

Cost= 2 +3 +8+7 =20 

Cost= 2 +7 +5+9 =23 

<1,4, 3, 2> Cost= 9 +7 +1+6 =23  <2,4, 3, 1> Cost= 2 +7 +1+7 =17,etc 

Figure 2.8 first few iterations of solving a small instance of the assignment problem by exhaustive 

search. 

Since the number of permutations to be considered for the general case of the assignment 

problem is n!,exhaustive search is impractical for all but very small instances of the problem. 

Fortunately, there is a much more efficient algorithm for this problem called the hungarian 

method. 

] 



 

 

solutiontosubproblem1 solutiontosubproblem2 

solutiontotheoriginalproblem 

subproblem2ofsizen/2 subproblem1ofsizen/2 

ofsizen problem 

 Divideandconquermethodology 

Adivide and conquer algorithmworks by recursively breaking down a problem into two or 

more sub-problems of the same (or related) type (divide), until these become simple enough to be 

solved directly (conquer). 

Divide-and-conqueralgorithmsworkaccordingtothefollowinggeneralplan: 

1. Aproblemisdividedintoseveralsubproblems ofthesametype,ideallyof about equalsize. 

2. The subproblems are solved (typically recursively, though sometimes a different algorithm 

is employed, especially when subproblems become small enough). 

3. If necessary, the solutions to the subproblems are combined to get a solution to the original 

problem. 

 

The divide-and-conquer technique as shown in figure 2.9, which depicts the case of dividing 

a problem into two smaller subproblems, then the subproblems solved separately. Finally solution 

to the original problem is done by combining the solutions of subproblems. 
 

Figure2.9divide-and-conquertechnique. 

Divideand conquer methodologycan beeasilyapplied on the following problem. 

1. Merge sort 

2. Quicksort 

3. Binarysearch 

 

 Merge sort 

Mergesort is based on divide-and-conquer technique. It sorts a given array a[0..n−1] by 

dividing it into two halves a[0..𝖫𝑛/2]−1] and a[𝖫𝑛/2]..n−1], sorting each of them recursively, and 

then merging the two smaller sorted arrays into a single sorted one. 

 

Algorithmmergesort(a[0..n−1]) 

//sortsarraya[0..n−1]byrecursive mergesort 

//input:anarraya[0..n−1]oforderable elements 

//output:arraya[0..n−1]sortedinnondecreasingorder 

Ifn >1 

Copya[0..𝖫𝑛/2]−1]tob[0..𝖫𝑛/2]−1] 

copya[𝖫𝑛/2]..n−1]toc[0..]𝑛/2]−1] 

mergesort(b[0..𝖫𝑛/2] − 1]) 

mergesort(c[0.. ]𝑛/2] − 1]) 



 

 

Merge(b,c,a)//see below 

The merging of two sorted arrays can be done as follows. Two pointers (array indices) are 

initialized to point to the first elements of the arrays being merged. The elements pointed to are 

compared, and the smaller of them is added to a new array being constructed; after that, the indexof 

the smaller element is incremented to point to its immediate successor in the array it was copied 

from. This operation is repeated until one of the two given arrays is exhausted, and then the 

remaining elements of the other array are copied to the end of the new array. 

Algorithmmerge(b[0..p−1],c[0..q−1],a[0..p+q−1]) 

//mergestwosortedarraysintoonesortedarray 

//input:arraysb[0..p−1]andc[0..q−1]both sorted 

//output:sortedarraya[0..p+q−1]oftheelementsofbandc i ←0; j 

←0; k←0 

Whilei<pandj<qdo 

Ifb[i]≤c[j] 

A[k]←b[i];i←i+1 else 

a[k]←c[j ]; j ←j + 1 k←k + 1 

If i =p  

Copyc[j..q −1]to a[k..p+q−1] 

Elsecopyb[i..p−1]to a[k..p +q −1] 

Theoperation ofthe algorithmon the list8, 3,2, 9, 7,1, 5,4 is illustratedinfigure2.10. 
 

Figure2.10exampleofmergesortoperation. 

 

Therecurrencerelationforthenumberofkeycomparisonsc(n)is 

C(n)=2c(n/2)+cmerge(n)forn>1, c(1)=0. 

 

Intheworstcase,cmerge(n)=n−1, andwehavetherecurrence 



 

 

Cworst(n)=2cworst(n/2)+n−1forn>1,cworst(1)=0. 

 

Bymastertheorem,cworst(n)∈θ(nlogn) 

Theexactsolutiontotheworst-caserecurrenceforn=2k 

Cworst(n)=nlog2n −n+ 1. 

 

Forlargen, thenumberofcomparisonsmadebythis algorithm in theaveragecaseturns out to be 

about 0.25n less and hence is also inθ (n log n). 

 

First,thealgorithmcanbeimplementedbottomupbymergingpairsofthearray’selements, then 

merging the sorted pairs, and so on. This avoids the time and space overhead of using a stack to 

handle recursive calls. Second, we can divide a list to be sorted in more than two parts, sort each 

recursively, and then merge them together. This scheme, which is particularly useful for sorting 

files residing on secondary memory devices, is called multiway mergesort. 

 

 Quicksort 

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer 

approach. Quicksort divides input elements according to their value. A partition is an 

arrangementof the array’s elements so that all the elements to the left of some element a[s] are less 

than orequal to a[s], and all the elements to the right of a[s] are greater than or equal to it: 

A[0]...a[s−1] a[s] a[s+1]...a[n−1] 

Allare≤a[s] allare≥a[s] 

Sortthetwosubarraystotheleftandtotherightofa[s]independently.noworkrequiredto combine the solutions 

to the subproblems. 

Hereispseudocodeofquicksort:callquicksort(a[0..n−1])whereasapartitionalgorithmusethe 

Hoarepartition 

 

Algorithmquicksort(a[l..r]) 

//sortsa subarraybyquicksort 

//input:subarrayofarraya[0..n−1],definedbyitsleftandrightindices landr 

//output:subarraya[l..r]sortedinnondecreasingorder 

If l <r 

S←hoarepartition(a[l..r])//sisasplit position 

Quicksort(a[l..s−1]) 

quicksort(a[s+1..r]) 

 



 

 

Algorithmhoarepartition(a[l..r]) 

//partitionsasubarraybyhoare’salgorithm,usingthefirstelementasapivot 

//input:subarrayofarraya[0..n−1],definedbyitsleftandrightindices landr(l<r) 

//output:partitionofa[l..r],withthesplitpositionreturned asthisfunction’s value 

P←a[l] 

I←l; j ←r +1 

Repeat 

Repeat i ←i + 1 until a[i]≥ p 

repeatj←j−1untila[j]≤p 

swap(a[i], a[j ]) 

Untili≥j 

Swap(a[i],a[j])//undolastswapwheni≥j 

Swap(a[l],a[j]) 

Returnj 

 

Figure2.11exampleofquicksortoperationofarraywithpivots shownin bold. 



 

 

 

 

Figure 2.12treeofrecursivecallsto quicksort withinputvalues landrofsubarrayboundsand split 

position s of a partition obtained. 

 

Thenumberofkeycomparisonsinthebestcasesatisfies therecurrence 

Cbest(n)=2cbest(n/2)+n forn>1, cbest(1)=0. 

Bymaster theorem,cbest(n)∈ θ(nlog2 n);solvingitexactlyforn=2k yieldscbest(n)=nlog2 n. The total 

number of key comparisons made will be equal to 

Cworst(n)= (n+1)+n+ . ..+3=((n+1)(n+2))/2−3∈θ(n2). 
 

 

 Binarysearch 

A binary search is efficient algorithm to find the position of a target (key) value within a 

sorted array. 

• The binary search algorithm begins by comparing the target value to the value of the 

middle element of the sorted array. If the target value is equal to the middle element's 

value, then the position is returned and the search is finished. 

• If the target value is less than the middle element's value, then the search continues on 

the lower half of the array. 

• If the target value is greater than the middle element's value, then the search continueson 

the upper half of the array. 

• This process continues, eliminating half of the elements, and comparing the target value 

to the value of the middle element of the remaining elements - until the target value is 

either found (position is returned). 

 

Binary search is a remarkably efficient algorithm for searching in a sorted array (say a). It 

works by comparing a search key k with the array’s middle element a[m]. If they match, the 

algorithm stops; otherwise, the same operation is repeated recursively for the first half of the arrayif 

k <a[m], and for the second half if k >a[m]: 



 

 

A[0]...A[m−1] A[m] A[m+1]...A[n−1] 

Searchhereifk≤A[m] Searchhereifk≥A[m] 

2 

 

K 

 
 

 
Though binarysearch is clearlybased on a recursive idea, it can be easily implemented as a 

nonrecursive algorithm, too. Here is pseudocode of this nonrecursive version. 

 

Algorithmbinarysearch(a[0..n−1],k) 

//implementsnonrecursivebinarysearch 

//input:anarraya[0..n−1]sortedinascendingorderandasearchkeyk 

//output:anindexofthearray’selementthatisequaltok/or−1ifthereisnosuch element 

L← 0; r ← n −1 

Whilel≤rdo 

M←𝖫(𝑙+r)/2] 

Ifk=a[m]returnm 

Else ifk <a[m] 

R← m−1 

Elsel← m+1 

Return−1 

 

The standard way to analyze the efficiency of binary search is to count the number of times 

the search keyis compared with an element of the array (three-way comparisons). One comparison 

of k with a[m], the algorithm can determine whether k is smaller, equal to, or larger than a[m]. 

Asanexample,letusapplybinarysearchtosearchingfor k=70inthearray. Theiterations of the 

algorithm are given in the following table: 

 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 

Value              

Iteration1 

Iteration2 

L 
     

M 
 

 

L 

  

 

M 

  
R

r 

Iteration3        L,
m 

R     

The worst-case inputs include all arrays that do not contain a given search key, as well as 

somesuccessfulsearches. Sinceafterone comparison thealgorithm faces thesamesituation but for an 

array half the size, 

Thenumberofkeycomparisonsintheworstcasecworst(n)byrecurrence relation. 

𝐶w𝑜𝑟𝑠𝑡(𝑛)=𝐶w𝑜𝑟𝑠𝑡(𝖫𝑛[)+1𝑓𝑜𝑟𝑛>1,𝐶w𝑜𝑟𝑠𝑡(1)=1. 

∴𝐶w𝑜𝑟𝑠𝑡(n)=𝖫𝑙𝑜𝑔2n]+1=]𝑙𝑜𝑔2(𝑛+1)] ∴𝐶w𝑜𝑟𝑠𝑡(2k)=(k+1)=𝑙𝑜𝑔2k+1forn=2k 

• First,theworst-casetime efficiencyofbinarysearch isin θ(logn). 

• Second, the algorithm simply reduces the size of the remaining array by half on each 
iteration, the number of such iterations needed to reduce the initial size n to the final size 1 

has to be about log2n. 

3 14 27 31 39 42 55 70 74 81 85 93 98 

 



 

 

• Third, the logarithmic function grows so slowly that its values remain small even for 

verylarge values of n. 

Theaverage caseslightlysmallerthanthatintheworstcase 

Cavg(n)≈log2n 

Theaveragenumberofcomparisonsinasuccessfulis 

Cavg(n)≈log2n−1 

Theaveragenumberofcomparisonsinanunsuccessfulis 

Cavg(n)≈log2(n+1). 

 

 Multiplicationoflargeintegers 

Some applications like modern cryptography require manipulation of integers that are over 

100 decimal digits long. Since such integers are too long to fit in a single word of a modern 

computer, they require special treatment. 

In the conventional pen-and-pencil algorithm for multiplying two n-digit integers, each of 

the n digits of the first number is multiplied by each of the n digits of the second number for the 

total of n2 digit multiplications. 

The divide-and-conquer method does the above multiplication in less than n2 digit 

multiplications. 

 

Example: 23∗14=(2·101+3·100)∗(1·101+4·100) 

=(2 ∗1)102+(2∗4 +3∗1)101+(3∗4)100 

=2·102+11·101+12·100 

=3·102+2·101+2·100 

=322 

Theterm(2 ∗ 1 +3∗ 4) computedas2 ∗ 4+ 3∗ 1=(2 +3)∗ (1+ 4)– (2∗ 1)− (3∗ 4).here (2 ∗ 1) 

and(3 ∗ 4) are already computed used. So only one multiplication only we have to do. 

 

Foranypair of two-digit numbers a = a1a0 and b= b1b0, their product c can be computed by 

the formula c = a ∗ b = c2102 + c1101 + c0, 

Where 

C2 =a1∗b1is theproduct of theirfirst digits, 

C0 =a0∗b0 is theproductof theirsecond digits, 

C1 =(a1 +a0)∗(b1 +b0) −(c2+c0)isthe productofthesum ofthe 

A’sdigitsandthe sumof the b’sdigitsminusthesumof c2 andc0. 

Now we apply this trick to multiplying two n-digit integers a and b where n is a positive 

even number. Let us divide both numbers in the middle to take advantage of the divide-and- 

conquer technique. We denote the first half of the a’s digits by a1 and the second half by a0; for b, 

the notations are b1 and b0, respectively. In these notations, a = a1a0 implies that a = a110n/2 + a0and 

b = b1b0 impliesthat b = b110n/2 + b0.therefore, takingadvantage of the same trick weused for two-

digit numbers, we get 

C=a∗b=(a110n/2+a0)*(b110n/2+b0) 

=(a1 *b1)10n + (a1 *b0 +a0 *b1)10n/2 +(a0 *b0) 

=c210n+c110n/2+c0, 

Where 

C2=a1* b1 is theproductof theirfirst halves, 



 

 

2 

b b 

C0 =a0* b0 isthe productof theirsecond halves, 

C1=(a1 +a0)*(b1+b0)− (c2 +c0) 

 

Ifn/2 is even, we can apply the same method for computing the products c2, c0, and c1.thus, 

if n is a power of 2, we have a recursive algorithm for computing the product of two n-digit 

integers. In its pure form, the recursion is stopped when n becomes 1. It can also be stopped when 

we deem n small enough to multiply the numbers of that size directly. 

 

The multiplication of n-digit numbers requires three multiplications of n/2-digit numbers, 

the recurrence for the number of multiplications m(n) is m(n) = 3m(n/2) for n >1, m(1) = 1. 

Solvingitbybackwardsubstitutionsforn=2kyields 

 

M(2k)=3m(2k−1) 

= 3[3m(2k−2)] 

= 32m(2k−2) 

=. . . 

= 3im(2k−i) 

=. . . 

= 3km(2k−k) 

=3k. 

(sincek=log2n) 

M(n)=3log
2

n=nlog3≈n1.585. 

 

 

(onthelast step,wetookadvantageof thefollowingpropertyoflogarithms:alogc=cloga.) 

 

Let a(n) be the number of digit additions and subtractions executed by the above algorithm 

in multiplying two n-digit decimal integers. Besides 3a(n/2)of these operations needed to compute 

the three products of n/2-digit numbers, the above formulas require five additions and one 

subtraction. Hence, we have the recurrence 

A(n)=3·a(n/2)+cnforn>1,a(1)=1. 

Byusingmastertheorem, weobtaina(n)∈θ(nlog
2
3), 

Which means that the total number of additions and subtractions have the same asymptotic 

order of growth as the number of multiplications. 

 

Example:forinstance:a=2345,b=6137,i.e.,n=4. Thenc 

=a* b =(23*102+45)*(61*102+37) 

C=a∗b= (a110n/2+a0)*(b110n/2+b0) 

=(a1 *b1)10n + (a1 *b0 +a0 *b1)10n/2 +(a0 *b0) 

=(23 * 61)104 +(23 *37+45 *61)102+(45* 37) 

=1403•104 +3596•102 +1665 

=14391265 



 

 

 Strassen’smatrixmultiplication 

The strassen’s matrix multiplication find the product c of two 2 × 2 matrices a and b with 

just seven multiplications as opposed to the eight required by the brute-force algorithm. 
 

Where 
 

 

Thus, to multiply two 2 × 2 matrices, strassen’s algorithm makes 7 multiplications and 18 

additions/subtractions,whereasthebrute-forcealgorithmrequires8multiplicationsand4additions. 

These numbers should not lead us to multiplying 2 × 2 matrices by strassen’s algorithm. Its 

importance stems from its asymptotic superiority as matrix order n goes to infinity. 

 

Let a and b be two n × n matrices where n is a power of 2. (if n is not a power of 2,matrices 

can be padded with rows and columns of zeros.) We can divide a, b, and their product c into four 

n/2 × n/2 submatrices each as follows: 

 

 

The value c00 can be computed either as a00 * b00 + a01 * b10 or as m1 + m4 − m5 + m7 where 

m1, m4, m5, and m7 are found by strassen’s formulas, with the numbers replaced by the 

corresponding submatrices. The seven products of n/2 × n/2 matrices are computed recursively by 

strassen’s matrix multiplication algorithm. 

 

Theasymptoticefficiencyofstrassen’smatrixmultiplicationalgorithm 

If m(n) is the number of multiplications made by strassen’s algorithm in multiplying two 

n×n matrices, where n is a power of 2, the recurrence relation is m(n) = 7m(n/2) for n > 1,m(1)=1. 

 

Sincen =2k, 

M(2k)=7m(2k−1) 

=7[7m(2k−2)] 

=72m(2k−2) 

=. . . 



 

 

2 

2 

2 

=7im(2k−i) 

=. . . 

=7km(2k−k)=7km(20)=7km(1)=7k(1) (sincem(1)=1) 

M(2k)=7k. 

Sincek=log2n, 

M(n)=7logn 

=nlog7 

≈n2.807 

Whichis smallerthan n3 required bythe brute-forcealgorithm. 

 

Since this savings in the number of multiplications was achieved at the expense of making 

extra additions, we must check the number of additions a(n) made by strassen’s algorithm. To 

multiply two matrices of order n>1, the algorithm needs to multiply seven matrices of ordern/2and 

make18 additions/subtractions ofmatrices of size n/2; when n =1, noadditions aremadesince two 

numbers are simply multiplied. These observations yield the following recurrence relation: 

A(n)=7a(n/2)+18(n/2)2forn>1, a(1)=0. 

Byclosed-formsolutiontothisrecurrenceandthemastertheorem,a(n)∈θ(nlog7).whichisa 

Betterefficiencyclassthanθ(n3)ofthebrute-forcemethod. 

 

Example:multiplythe followingtwomatricesbystrassen’smatrix multiplicationalgorithm. 

1 0 2 1 0 1 0 1 
A=[4 1 1 0] b=[2 1 0 4] 

0 1 3 0 
5 0 2 1 

2 0 1 1 
1 3 5 0 

Answer: 

C=[
𝐶00 𝐶01]=[

𝐴00 𝐴01]x[
𝐵00 𝐵01] 

𝐶10 𝐶11 𝐴10 𝐴11 𝐵10 𝐵11 

Wherea00=[
1 0

] a01=[
2 1

] a10=[
0 1

] a11=[
3 0

] 
4 1 1 0 5 0 2 1 

B00=[
0 1

] b01=[
0 1

] b10=[
2 0

] b11=[
1 1

] 
2 1 0 4 1 3 5 0 

M1=(a00+a11)*(b00+b11)=([
1 0

]+[
3 0

])*([
0 1

]+[
1 1

])=[
4 0

]∗[
1 2

]=[
4 8

] 
4 1 2 1 2 1 5 0 6 2 7 1 20 14 

Similarlyapplystrassen’smatrixmultiplicationalgorithmto findthe following. 

M2=[
2 4

],m3=[
−1 0

],m4=[
6 −3

],m5= [
8 3

], m6= [
2 −3

],m7=[
3 2

] 
2 8 −9 4 3 0 10 5 −2 −3 −9 −4 

C00=[
5 4

],c01= [
−7 3

],c10=[
8 1

],c11=[
3 7

] 
4 5 1 9 5 8 7 7 

5 4 7 3 

C=[
𝐶00 𝐶01]=[4 5 1 9] 
𝐶10 𝐶11 8 1 3 7 

5 8 7 7 



 

 

 Closest-pairandconvex-hullproblems. 

The two-dimensional versions of the closest-pair problem and the convex-hull problem 

problems can be solved by brute-force algorithms in θ(n2)and o(n3)time, respectively.thedivide-and-

conquer technique provides sophisticated and asymptotically more efficient algorithms to solve 

these problems. 

 

Theclosest-pair problem 

Let p be a set of n >1 points in the cartesian plane. The points are ordered innondecreasing 

order of their x coordinate. It will also be convenient to have the points sorted (by merge sort) in a 

separate list in nondecreasingorder ofthe y coordinate and denote such a list byq. 

If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm. If n >3, we 

candividethepointsinto twosubsets plandprof ]𝑛/2] and𝖫𝑛/2] points,respectively,bydrawing a 

vertical line through the median m of their x coordinates so that ]𝑛/2]points lie to the left of oron 

the line itself, and ]𝑛/2]points lie to the right of or on the line. Then we can solve the closest- 
pairproblem recursivelyforsubsets pland pr . Let dland drbethesmallest distances between pairs of 
points in pl and pr, respectively, and let d = min{dl, dr}. 

 

Figure2.13(a)ideaofthedivide-and-conqueralgorithmfortheclosest-pair problem. 

(b)rectangle thatmaycontainpoints closerthandmin topoint p. 

 

Note that d is not necessarily the smallest distance between all the point pairs becausepoints 

of a closer pair can lie on the opposite sides of the separating line. Therefore, as a step combining 

the solutions to the smaller subproblems, we need to examine such points. Obviously, we can limit 

our attention to the points inside the symmetric vertical strip of width 2d around the separating line, 

since the distance between any other pair of points is at least d (figure 2.13a). 

 

Let s be the list of points inside the strip of width 2d around the separating line, obtained 

from q and hence ordered in nondecreasing order of their y coordinate. We will scan this list, 

updatingtheinformationaboutdmin,theminimumdistanceseensofar,ifweencounteracloser 



 

 

Pair of points. Initially, dmin = d, and subsequently dmin ≤ d. Let p(x, y) be a point on this list. For a 

point p (x, y) to have a chance to be closer to p than dmin, the point must follow p on list s and the 

difference between their y coordinates must be less than dmin. 

Geometrically, this means that p must belong to the rectangle shown in figure 2.13b. The 

principal insight exploited by the algorithm is the observation that the rectangle can contain just a 

few such points, because the points in each half (left and right) of the rectangle must be at least 

distancedapart. Itiseasytoprovethatthetotalnumberofsuchpointsintherectangle,includingp, does not 

exceed 8. A more careful analysis reduces this number to 6. Thus, the algorithm can 

considernomorethan fivenextpoints followingp onthe lists, beforemovingupto thenext point. 

Here is pseudocode of the algorithm. We follow the advice given in to avoid computing 

square roots inside the innermost loop of the algorithm. 

 

Algorithmefficientclosestpair(p,q) 

//solvestheclosest-pairproblembydivide-and-conquer 

//input:anarraypofn≥2points inthecartesianplanesortedinnondecreasing 

// orderoftheirxcoordinates andanarrayqofthe samepoints sortedin 

// nondecreasingorder ofthe y coordinates 

//output:euclideandistancebetweentheclosestpairofpoints 

Ifn ≤ 3 

 

Else 

Returnthe minimaldistancefoundbythebrute-forcealgorithm 

 

Copythefirst]𝑛/2]points of pto arraypl 

Copy the same ]𝑛/2] points from q to array 

qlcopytheremaining𝖫𝑛/2]pointsofptoarrayprcopy 

the same 𝖫𝑛/2] points from q to array qr 

dl←efficientclosestpair(pl, ql) 

dr←efficientclosestpair(pr, qr) 

D ←min{dl, dr} 

m←p[]𝑛/2]−1].x 

Copyall thepoints ofqforwhich|x−m|<dintoarrays[0..num−1] 

Dminsq←d2 

Fori ←0 tonum−2 do 

K←i+1 

Whilek≤num−1and (s[k].y−s[i].y)2<dminsq 

Dminsq←min((s[k].x−s[i].x)2+(s[k].y−s[i].y)2,dminsq) k←k + 

1 

Returnsqrt(dminsq) 

 

The algorithm spends linear time both for dividing the problem into two problems half the 

size and combining the obtained solutions. Therefore, assuming as usual that n is a power of 2, we 

have the following recurrence for the running time of the algorithm: 

T(n)=2t(n/2)+f(n), 

Wheref(n)∈θ(n).applyingthemastertheorem(witha=2,b=2,andd=1),weget t (n)∈θ (n logn). 

Thenecessityto presort input points does notchangetheoverall efficiencyclass 
ifsortingisdonebyao(nlogn)algorithmsuchasmergesort.infact,thisisthebestefficiency 



 

 

 

Unitiiidynamicprogrammingandgreedytechnique 

 

Computingabinomialcoefficient 

 

Dynamicprogrammingbinomialcoefficients 

Dynamicprogrammingwasinventedbyrichardbellman,1950.itisaverygeneraltechnique for solving 

optimization problems. 

Dynamicprogrammingrequires: 

1. Problemdividedintooverlappingsub-problems 

2. Sub-problemcanberepresentedbyatable 

3. Principle of optimality, recursive relation between smaller and larger problems 

comparedtoabruteforcerecursivealgorithmthatcouldrunexponential,thedynamic 

Programmingalgorithm runstypicallyin quadratic time.therecursivealgorithm ran in exponential 
Timewhiletheiterativealgorithmraninlinear time. 

Computingabinomialcoefficient 

Computingbinomialcoefficientsisnonoptimizationproblembutcanbesolvedusing dynamic 

programming. 

Binomialcoefficientsarerepresentedbyc(n,k)=n!/(k!(n-k)!)Or(𝑛)andcanbeusedto 

Representthecoefficients ofabinomial: 

(a+b)n=c(n, 0)anb0+.. .+c(n,k)an-kbk+.. .+c(n, n)a0bn 

Therecursiverelation isdefinedbytheprior power 

C(n,k)=c(n-1, k-1)+c(n-1,k)forn>k>0withinitialcondition c(n,0)=c(n,n)=1 

Dynamic algorithm constructs anxktable, with the first column and diagonal filled out using 

theinitial condition. Construct the table: 

 K 

 

 

 

 

 

N 

 0 1 2 ... K-1 K 

0 1      

1 1 1     

2 1 2 1    

. . .       

K 1     1 

. . .       

N-1 1    C(n-1,k-1) C(n-1,k) 

N 1     C(n,k) 

Thetableisthenfilledoutiteratively,rowbyrow usingtherecursive relation. 

Algorithmbinomial(n,k) 

Fori←0 tondo//filloutthetablerowwise 

Fori=0to min(i,k)do 

If j==0orj==ithenc[i, j] ←1//initial condition 

Elsec[i,j]←c[i-1,j-1]+c[i-1,j]//recursive relation 

Returnc[n,k] 



 

 

j=1 i=1 j=1 

The cost of the algorithm is filing out the table. Addition is the basic operation. Because k≤n, the 

sumneedstobesplitintotwopartsbecauseonlythehalfthetableneedstobefilledout for i <k and remaining 

part of the table is filled out across the entire row. 

 

A(n,k)=sumforuppertriangle+sumforthelower rectangle 

=∑i=1
k
∑ 

i-1
1 +∑ 

n
∑ 

k
1 

=∑i=1
k(i-1)+∑i=1

nk 

=(k-1)k/2+k(n-k)ϵθ(nk) 

Time efficiency: θ(nk) 

spaceefficiency:θ(nk) 

 

Example:relationofbinomialcoefficients andpascal’striangle. 

Aformulaforcomputingbinomialcoefficientsis this: 
 

Usinganidentitycalledpascal'sformulaarecursiveformulationforitlookslike this: 
 

This construction forms each number in the triangle is the sum of the two numbers directly aboveit. 

 

Findingabinomialcoefficientisassimpleasalookupinpascal's triangle. 

 

 

Example:(x+y)7=1•x7y0+7•x6y1+21•x5y2+35•x4y3+35•x3y4+21•x2y5+7•x1y6+1•x0y7 

=x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7 

http://mathworld.wolfram.com/PascalsFormula.html


 

 

 Warshall’sandfloyd’algorithm 

Warshall’s and floyd’s algorithms: warshall’s algorithm for computing the transitive closure 

(there is a path between any two nodes) of a directed graph and floyd’s algorithm for the all-pairs 

shortest-paths problem. These algorithms are based on dynamic programming. 

 

Warshall’salgorithm(all-pairspathexistenceproblem) 

A directed graph (or digraph) is a graph, or set of vertices connected by edges, where the 

edges have a direction associated with them. 

Anadjacency matrix a={aij}ofadirectedgraphisthebooleanmatrix thathas1initsith row and 

jth column if and only if there is a directed edge from the ith vertex to the jth vertex. 

The transitive closure of a directed graph with n vertices can be defined as the n x n 

booleanmatrix t={tij},inwhichtheelementintheithrowandthejthcolumnis1ifthereexistsa nontrivial 

path (i.e., directed path of a positive length) from the ith vertex to the jth vertex; otherwise, tij is 0. 
 

Figure3.1(a)digraph.(b)itsadjacencymatrix.(c)itstransitive closure. 

The transitive closure of a digraph can be generated with the help of depth-first search or 

breadth-first search. Every vertex as a starting point yields the transitive closure for all. 

Warshall’s algorithm constructs the transitive closure through a series of n × n boolean 

matrices: r(0), . . . , r(k−1), r(k), . . . R(n). 

Theelementrij
(k)intheithrowandjthcolumnofmatrixr(k)(i,j=1,2,...,n,k=0,1,... 

, n) is equal to 1 if and onlyif there exists a directed path of a positive length from the ith vertex to 

the jth vertex with each intermediate vertex, if any, numbered not higher than k. 

Stepstocomputer(0),. ..,r(k−1),r(k),...r(n). 

• The series starts with r(0), which does not allow any intermediate vertices in its paths; 

hence, r(0) is nothing other than the adjacency matrix of the digraph. 

• R(1)containstheinformationaboutpathsthatcanusethefirstvertex asintermediate. It may 
contain more 1’s than r(0). 

• The last matrix in the series, r(n), reflects paths that can use all n vertices of the 

digraph as intermediate and hence is nothing other than the digraph’s transitive 

closure. 

• In general, each subsequent matrix in series has one more vertex to use as 

intermediate for its paths than its predecessor. 

• The last matrix in the series, r(n), reflects paths that can use all n vertices of the 
digraph as intermediate and hence is nothing other than the digraph’s transitive 

closure. 



 

 

ij 

ik 

 

 

Figure3.2rulefor changingzerosinwarshall’salgorithm. 

 

All the elements of each matrix r(k) is computed from its immediate predecessor r(k−1). 

Letr(k), the element in the ith row and jth column of matrix r(k), be equal to 1. This means that there 

exists a path from the ith vertex vi to the jth vertex vj with each intermediate vertex numbered not 

higher than k. 

Thefirstpartofthisrepresentationmeansthatthereexistsapathfromvitovkwitheach 

Intermediatevertexnumberednothigherthank−1(hence,r(k−1)=1),andthesecondpartmeans 

That there exists a path from vkto vjwith each intermediate vertex numbered not higher than k − 

1(hence, rkj
(k−1)= 1). 

Thusthefollowingformulagenerastheelementsofmatrixr(k)fromtheelementsofmatrix 

R(k−1): 
 

Applyingwarshall’salgorithmbyhand: 

• If anelementrijis1inr(k−1),it remains1inr(k). 

• If an element rijis 0 in r(k−1), it has to be changed to 1 in r(k)if and onlyif the element in its 

row i and column k and the element in its column j and row k are both 1’s inr(k−1). 

 

Algorithmwarshall(a[1..n,1..n]) 

//implementswarshall’salgorithmforcomputingthetransitive closure 

//input:theadjacencymatrixaofadigraphwith nvertices 

//output:thetransitiveclosureofthedigraph r(0) ←a 

Fork←1 to n do 

Fori ←1to n do 

Forj ←1 to n do 

R(k)[i,j]←r(k−1)[i,j]or(r(k−1)[i,k]andr(k−1)[k,j]) 

Return r(n) 

 

Warshall’salgorithm’stimeefficiencyisonlyθ(n3).spaceefficiencyisθ(n2).i.e matrixsize. 



 

 

 

 

1’s reflect the existence of paths with no 

intermediate vertices (r(0) is just the 

adjacency matrix); boxed row and column 

are used for getting r(1). 

 

1’s reflect the existence of paths with 

intermediate vertices numbered not higher 

than 1, i.e., just vertex a (note a new path 

from d to b); boxed row and column are 

used for getting r(2). 

1’s reflect the existence of paths with 

intermediate vertices numbered not higher 

than 2, i.e., a and b (note two new paths); 

Boxedrowandcolumnareusedforgetting r(3). 

 

1’s reflect the existence of paths with 

intermediate vertices numbered not higher 

than 3, i.e., a, b, and c (no new paths); 

Boxedrowandcolumnareusedforgetting r(4). 

 

1’s reflect the existence of paths with 

intermediate vertices numbered not higher 

than 4, i.e., a, b, c, and d (note five new 

paths). 

 

Figure3.3applicationofwarshall’salgorithmtothedigraphshown.new1’sarein bold. 

 

Floyd’salgorithm(all-pairsshortest-pathsproblem) 

Floyd’slalgorithmisanalgorithmforfindingshortestpathsforallpairsinaweighted 

Connectedgraph(undirectedordirected)with(+/-)edge weights. 

A distance matrix is a matrix (two-dimensional array) containing the distances, taken 

pairwise, between the vertices of graph. 

The lengths of shortest paths in an n × n matrix d called the distance matrix: the element dij 

in the ith row and the jth column of this matrix indicates the length of the shortest path from the ith 

vertex to the jth vertex. 

We can generate the distance matrix with an algorithm that is very similar to warshall’s 

algorithm is called floyd’s algorithm. 

Floyd’salgorithmcomputesthedistance matrix ofaweighted graph with n verticesthrough a 

series of n × n matrices: 

D(0),.. ., d(k−1),d(k), .. ., d(n) 

Theelementdij
(k)intheithrow andthejthcolumnof matrixd(k) (i,j=1,2,...,n,k= 0,1, 

...,n)isequaltothelengthoftheshortestpathamongallpathsfromtheithvertextothejth vertex with each 

intermediate vertex, if any, numbered not higher than k. 

Stepstocomputed(0),. ..,d(k−1),d(k),...,d(n) 



 

 

• The series starts with d(0), which does not allow any intermediate vertices in its 

paths; hence, d(0)is simply the weight matrix of the graph. 

• As in warshall’s algorithm, we can compute all the elements of each matrix d(k) from 
its immediate predecessor d(k−1). 

• The last matrix in the series, d(n), contains the lengths of the shortest paths amongall 

paths that can use all n vertices as intermediate and hence is nothing other than the 

distance matrix. 

 

Let dij(
k) be the element in the ith row and the jth column of matrix d(k). This means that 

dij(
k) is equal to the length of the shortest path among all paths from the ith vertex vi to the jthvertex 

vj with their intermediate vertices numbered not higher than k. 
 

Figure3.4underlyingideaoffloyd’salgorithm. 

 

Thelengthof theshortestpathcanbecomputedbythefollowingrecurrence: 
 

 

Algorithmfloyd(w[1..n,1..n]) 

//implementsfloyd’salgorithmfortheall-pairsshortest-paths problem 

//input:theweightmatrixw ofagraphwithnonegative-lengthcycle 

//output:thedistancematrixoftheshortestpaths’lengths d ←w 

//is not necessary if w can be overwritten 

Fork←1 to n do 

Fori ←1to n do 

Forj ←1 to n do 

D[i,j]←min{d[i, j], d[i, k]+d[k, j]} 

Returnd 

 

Floyd’salgorithm’stimeefficiencyisonlyθ(n3).spaceefficiencyisθ(n2).i.ematrixsize. 



 

 

 

Lengths of the shortest paths with no 

intermediate vertices (d(0) is simply the 

weight matrix). 

 

 

Lengths of the shortest paths with 

intermediate vertices numbered not higher 

than 1, i.e., just a (note two new shortest 

paths from b to c and from d to c ). 

 

Lengths of the shortest paths with 

intermediate vertices numbered not higher 

than 2, i.e., a and b (note a new shortest 

path from c to a). 

 

Lengths of the shortest paths with 

intermediate vertices numbered not higher 

than 3, i.e., a, b, and c (note four new 

shortest paths from a to b, from a to d, 

from b to d, and from d to b). 

 

Lengths of the shortest paths with 

intermediate vertices numbered not higher 

than 4, i.e., a, b, c, and d (note a new 

shortest path from c to a). 

 

 

Figure 3.5 application of floyd’s algorithm to the digraph shown. Updated elements are shown in 

bold. 

 

 Optimalbinarysearchtrees 

A binary search tree is one of the most important data structures in computer science. Oneof 

its principal applications is to implement a dictionary, a set of elements with the operations of 

searching, insertion, and deletion. 
 

Figure3.6twooutof 14possiblebinarysearchtreeswithkeysa,b,c,andd. 

Consider four keys a, b, c, and d to be searched for with probabilities 0.1, 0.2, 0.4, and 0.3, 

respectively. Figure 3.6 depicts two out of 14 possible binary search trees containing these keys. 



 

 

The average number of comparisons in a successful search in the first of these trees is 0.1 . 

1+0.2.2+0.4.3+0.3.4=2.9,andfor thesecondoneitis 0.1.2+0.2.1+0.4.2+0.3.3=2.1. 

Neitherofthesetwotreesisoptimal. 

Thetotalnumberofbinarysearchtreeswithnkeysisequaltothenthcatalan number, 
 

C(n)=(2n)!/(n+1)!N! 

Let a1, . . . , anbe distinct keys ordered from the smallest to the largest and let p1,..., 

pnbe the probabilities of searching for them. Let c(i, j) be the smallest average number of 

comparisons made in a successful search in a binary search tree ti
jmade up of keys ai, . . . , aj, where 

i, j are some integer indices, 1≤ i ≤ j ≤ n. 
 

Figure3.7binarysearchtree (bst)withrootakandtwooptimalbinarysearchsubtrees 

Ti
k−1

andtk+1
j
. 

 

 

Consider all possible ways to choose a root ak among the keys ai, . . . , aj . For such a binary 

search tree (figure 3.7), the root contains key ak, the left subtree ti
k−1 contains keysai, . . . , ak−1 

optimally arranged, and the right subtree t k+1
jcontains keys ak+1, . . . , aj also optimallyarranged. 

Ifwecounttreelevelsstartingwith1tomakethecomparisonnumbersequalthekeys’ 

Levels,thefollowingrecurrencerelationisobtained: 
 

Weassumein above formulathat c(i, i −1)=0 for1≤ i ≤ n +1,which can beinterpreted as 

The number ofcomparisonsintheemptytree.notethatthisformulaimpliesthatc(i,i)=pifor 1≤i 

≤n, asitshouldbeforaone-nodebinarysearchtreecontainingai. 



 

 

 

 

Figure 3.8 table of the dynamic programming algorithm for constructing an optimal binary search 

tree. 

The two-dimensional table in figure 3.8 shows the values needed for computingc(i, j). 

Theyare in rowi and the columns to the left of column j and in column j and the rows below rowi. 

The arrows point to the pairs of entries whose sums are computed in order to find the smallest one 

toberecordedasthevalueofc(i,j).thissuggestsfillingthetablealongitsdiagonals,startingwith all zeros on 

the main diagonal and given probabilities pi,1≤ i ≤ n, right above it and moving toward the upper 

right corner. 

 

Algorithmoptimalbst(p[1..n]) 

//findsan optimalbinarysearchtreebydynamic programming 

//input:anarrayp[1..n]ofsearchprobabilitiesforasortedlistofnkeys 

//output:averagenumberofcomparisonsinsuccessfulsearchesinthe 

//optimalbstandtabler ofsubtrees’rootsintheoptimal bst 

Fori ←1 to n do 

C[i,i−1]←0 

c[i, i]←p[i] 

r[i, i]←i 

C[n+1,n]←0 

Ford←1ton−1do//diagonalcount 

Fori ←1to n −d do 

J ←i + d 

minval←∞ 

Fork←i to j do 

If c[i, k − 1]+c[k +1, j]< minval 

Minval←c[i,k − 1]+c[k +1, j]; kmin←k 

R[i,j]←kmin 

sum←p[i]; 

Fors←i +1 to j do 

Sum←sum+p[s] 

c[i, j ]←minval + sum 



 

 

Returnc[1,n],r 

The algorithm’s space efficiencyis clearlyquadratic, ie, :θ(n3); the time efficiencyof this 

version of the algorithm is cubic. It is possible to reduce the runningtime of the algorithm to θ(n2) 

by taking advantage of monotonicity of entries in the root table, i.e., r[i,j] is always in the range 

between r[i,j-1] and r[i+1,j] 

 

Example: letusillustratethealgorithmbyapplyingittothefour-keysetweusedatthe beginning of 

this section: 

Key

 abcdprobability0.10.20.

40.3 the initial tables are: 

Letus computec(1,2): 
 

Thus, out of two possiblebinarytrees containing the first two keys, a and b, the root of the 

optimal treehas index 2 (i.e., it contains b), and theaveragenumberofcomparisonsin asuccessful 

search in this tree is 0.4. 

Wearriveatthe followingfinaltables: 
 

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since r(1, 

4) = 3, the root of the optimal tree contains the third key, i.e., c. Its left subtree is made up of keys a 

and b, and its right subtree contains just key d. To find the specific structure of these subtrees, we 

find first their roots by consulting the root table again as follows. Since r(1, 2) = 2, the root of the 

optimal tree containing a and b is b, with a being its left child (and the root of the one node 

tree:r(1,1)=1).sincer(4,4)=4,therootofthisone-nodeoptimaltreeisitsonlykeyd.figure 

3.10presentstheoptimaltreeinits entirety. 
 

 

Figure3.10optimalbinarysearch treeforthe above example. 



 

 

 

 Knapsackproblemandmemoryfunctions 

Designingadynamicprogrammingalgorithmfortheknapsackproblem: 

Givennitemsofknownweightsw1,...,wnandvaluesv1,...,vnandaknapsackof capacity w, find the 

most valuable subset of the items that fit into the knapsack. 

Assume that all the weights and the knapsack capacityare positive integers; the item values 

do not have to be integers. 

0/1knapsackproblemmeans,thechosenitemshouldbeeithernullor whole. 

 
Recurrencerelationthatexpressesasolutiontoaninstanceoftheknapsackproblem 

Let us consider an instance defined by the first i items, 1≤ i ≤ n, with weights w1, . . . , wi, 

values v1, . . . , vi, and knapsack capacityj, 1 ≤ j ≤ w. Let f(i, j)be the value of an optimal solution to 

this instance, i.e., the value of the most valuable subset of the first i items that fit into the knapsack 

of capacity j. We can divide all the subsets of the first i items that fit the knapsack of capacity j into 

two categories: those that do not include the ith item and those that do. Note the following: 

1. Among the subsets that do not include the ith item, the value of an optimal subset is, by 

definition, f(i − 1, j). 

2. Amongthesubsets that do includethe ith item (hence, j – wi≥ 0), an optimal subset is made 

up of this item and an optimal subset of the first i − 1 items that fits into the knapsack of 

capacity j − wi. The value of such an optimal subset is vi + f(i − 1, j − wi). 

 

Thus, the value of an optimal solution among all feasible subsets of the first i items is the 

maximum of these two values. Of course, if the ith item does not fit into the knapsack, the value of 

an optimal subset selected from the first i items is the same as the value of an optimal subset 

selected from the first i − 1 items. These observations lead to the following recurrence: 
 

Itisconvenienttodefine theinitialconditionsasfollows: 

F(0,j)=0forj≥0 andf(i,0)=0fori≥0. 

Our goal is to find f(n, w), the maximal value of a subset of the n given items that fit into the 

knapsack of capacity w, and an optimal subset itself. 

For f(i, j),computethe maximum oftheentryin theprevious rowand the samecolumn and the 

sum of vi and the entry in the previous row and wicolumns to the left. The table can be filled either 

row by row or column by column. 

 

 

 

Algorithmdpknapsack(w[1..n],v[1..n],w) 

Varv[0..n,0..w],p[1..n,1..w]:int 

Forj :=0 towdo 

V[0,j]:=0 

Fori :=0 to n do 

V[i,0]:=0 

Fori :=1 to n do 

Forj :=1 towdo 



 

 

Ifw[i]jandv[i]+v[i-1,j-w[i]]>v[i-1,j] then 

V[i,j]:=v[i]+v[i-1,j-w[i]];p[i,j]:=j-w[i] 

Else 

V[i,j]:=v[i-1,j];p[i,j]:=j 

Returnv[n,w]andtheoptimalsubsetbybacktracing 

 

Note:runningtimeand space: o(nw). 

 

Table3.1forsolvingtheknapsack problembydynamicprogramming. 
 

Example1letusconsidertheinstancegivenbythefollowingdata: table 3.2 

an instance of the knapsack problem: 

 

 

 

 

 

 

 

The maximal value is f(4, 5) = $37. We can find the composition of an optimal subset by 

backtracing (back tracing finds the actual optimal subset, i.e. Solution), the computations of this 

entry in the table. Since f(4, 5) > f(3, 5), item 4 has to be included in an optimal solution along with 

an optimal subset for filling 5 − 2 = 3 remaining units of the knapsack capacity. The value of 

thelatteris f(3, 3). Since f(3, 3)=f(2, 3), item 3 need not bein an optimalsubset. Since f(2, 3)> f(1, 3), 

item 2 is a part of an optimal selection, which leaves element f(1, 3 − 1) to specify its remaining 

composition. Similarly, since f(1, 2) > f(0, 2), item 1 is the final part of the optimal solution {item 

1, item 2, item 4}. 

 

 

 

Table3.3solvinganinstanceoftheknapsackproblem bythe dynamicprogramming algorithm. 

 Capacityj 

I 0 1 2 3 4 5 

0 0 0 0 0 0 0 

W1=2, v1 =12 1 0 0 12 12 12 12 

W2=1, v2 =10 2 0 10 12 22 22 22 

W3=3, v3 =20 3 0 10 12 22 30 32 

W4=2, v4 =15 4 0 10 15 25 30 37 

item weight value capacity 

1 2 $12  

 

W=5 
2 1 $10 

3 3 $20 

4 2 $15 

 



 

 

Memoryfunctions 

The direct top-down approach to finding a solution to such a recurrence leads to an 

algorithm that solves common subproblems more than once and hence is very inefficient. 

The bottom up fills a table with solutions to all smaller subproblems, but each of them is 

solved onlyonce. An unsatisfying aspect of this approach is that solutions to some of these smaller 

subproblems are often not necessary for getting a solution to the problem given. 

Since this drawback is not present in the top-down approach, it is natural to try to combine 

the strengths of the top-down and bottom-up approaches. The goal is to get a method that solves 

only subproblems that are necessary and does so only once. Such a method exists; it is based on 

using memory functions. 

This method solves a given problem in the top-down manner but, in addition, maintains a 

table of the kind that would have been used by a bottom-up dynamic programming algorithm. 

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that 

they have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

method checks the corresponding entry in the table first: if this entry is not “null,” it is simply 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

recorded in the table. 

The following algorithm implements this idea for the knapsack problem. After initializing 

the table, the recursive function needs to be called with i = n (the number of items) and j = w (the 

knapsack capacity). 

Algorithmmfknapsack(i,j) 

//implementsthememoryfunctionmethodforthe knapsackproblem 

//input:anonnegativeintegeri indicatingthenumberofthefirstitemsbeing considered 

// andanonnegativeintegerj indicatingthe knapsackcapacity 

//output:thevalue ofanoptimal feasiblesubset of thefirst i items 

//note:usesasglobalvariablesinputarrays weights[1..n], values[1..n], 

// andtablef[0..n,0..w] whoseentriesare initializedwith−1’sexceptfor 

// row0andcolumn 0initializedwith 0’s 

If f[i,j]<0 

Ifj <weights[i] 

Value←mfknapsack(i−1,j) 

Else 

Value←max(mfknapsack(i−1,j), 

Values[i]+mfknapsack(i−1,j−weights[i])) 

F[i,j ]←value 

Returnf[i,j] 

 

Example2letus applythememoryfunctionmethodtotheinstanceconsideredin example1. 

 Capacityj 

I 0 1 2 3 4 5 

0 0 0 0 0 0 0 

W1=2, v1 =12 1 0 0 12 12 12 12 

W2=1, v2 =10 2 0 - 12 22 - 22 

W3=3, v3 =20 3 0 - - 22 - 32 

W4=2, v4 =15 4 0 - - - - 37 



 

 

 

Only 11 out of 20 nontrivial values (i.e., not those in row 0 or in column 0) have been 

computed. Just one nontrivial entry, v (1, 2), is retrieved rather than being recomputed. For larger 

instances, the proportion of such entries can be significantly larger. 

 

 Greedytechnique 

The greedy approach suggests constructing a solution through a sequence of steps, each 

expanding a partially constructed solution obtained so far, until a complete solution to the problem 

is reached. On each step and this is the central point of this technique. 

 

Thechoicemademustbe: 

• Feasible,i.e.,ithastosatisfytheproblem’s constraints 

• Locallyoptimal,i.e.,ithastobethebestlocalchoiceamongallfeasiblechoicesavailableon that step 

• Irrevocable,i.e.,oncemade,itcannotbechanged onsubsequentstepsofthe algorithm 

 

Greedytechniquealgorithmsare: 

• Prim’salgorithm 

• Kruskal'salgorithm 

• Dijkstra'salgorithm 

• Huffmantrees 

 

Two classic algorithms for the minimum spanning tree problem: prim’s algorithm andkruskal’s 

algorithm. They solve the same problem by applying the greedy approach in twodifferent ways, and 

both of them always yield an optimal solution. 

 

Another classic algorithm nameddijkstra’s algorithm used to find the shortest-path in a 

weighted graph problem solved by greedy technique . Huffman codes is an important data 

compression method that can be interpreted as an application of the greedy technique. 

 

Thefirstwayisoneofthecommonwaystodotheproofforgreedytechniqueisby 

Mathematicalinduction. 

 

The second way to prove optimality of a greedy algorithm is to show that on each step it does 

at least as well as any other algorithm could in advancing toward the problem’s goal. 

 

Example: findthe minimum number of moves needed for a chess knight to go from one corner of a 

100 × 100 board to the diagonally opposite corner. (the knight’s moves are l-shaped jumps: two 

squares horizontally or vertically followed by one square in the perpendicular direction.) 

 

A greedysolution is clear here: jump as close to the goal as possible on each move. Thus, if 

its start and finish squares are (1,1) and (100, 100), respectively, a sequence of 66 moves such as(1, 

1) − (3, 2) − (4, 4) − . . . − (97, 97) − (99, 98) − (100, 100) solves the problem(the number k of two-

move advances can be obtained from the equation 1+ 3k = 100). 



 

 

Why is this a minimum-move solution? Because if we measure the distance to the goal by 

the manhattan distance, which is the sum of the difference between the row numbers and the 

difference between the column numbers of two squares in question, the greedy algorithm decreases 

it by 3 on each move. 

 

The third way is simply to show that the final result obtained by a greedy algorithm is 

optimal based on the algorithm’s output rather than the way it operates. 

 

Example:considertheproblemofplacingthemaximumnumberofchips onan8×8boardsothat no two 

chips are placed on the same or adjacent vertically, horizontally, or diagonally. 

 

Figure3.12(a)placementof16chipsonnon-adjacentsquares.(b)partitionoftheboard proving impossibility 

of placing more than 16 chips. 

 

It is impossible to place more than one chip in each of these squares, which implies that the 

total number of nonadjacent chips on the board cannot exceed 16. 

 

 

 Prim’salgorithm 

 

A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a 

tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a 

minimum spanning tree is its spanning tree of the smallest weight, where the weight of a tree is 

defined as the sum of the weights on all its edges. The minimum spanning tree problem is the 

problem of finding a minimum spanning tree for a given weighted connected graph. 
 

Figure3.13graphanditsspanningtrees,with t1beingtheminimumspanningtree. 

 

The minimum spanning treeis illustrated in figure 3. If we were to try constructing a 

minimum spanning tree by exhaustive search, we would face two serious obstacles. First, the 

number of spanning trees grows exponentially with the graph size (at least for dense graphs). 

Second, generating all spanning trees for a given graph is not easy; in fact, it is more difficult than 

finding a minimum spanning tree for a weighted graph. 



 

 

 

Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding 

subtrees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from 

the set v of the graph’s vertices. On each iteration, the algorithm expands the current tree in the 

greedymannerbysimplyattachingto it the nearest vertex not inthat tree. Thealgorithm stops after all 

the graph’s vertices have been included in the tree being constructed. 

 

Algorithmprim(g) 

//prim’salgorithmforconstructingaminimumspanningtree 

//input:aweightedconnectedgraph g={v,e} 

//output:et,thesetofedgescomposingaminimumspanningtreeofg vt←{v0} 

//the set of tree vertices can be initialized with any vertex et←φ 

Fori ←1to|v|−1do 

Findaminimum-weightedgee∗=(v∗,u∗)amongalltheedges(v,u) such that 

v is in vt and u is in v − vt 

Vt←vt∪{u*} 

Et←et∪{e*} 

Returnet 

 

Ifagraphisrepresentedby itsadjacency listsandthepriority queueisimplementedasa min-

heap,therunningtimeofthealgorithmiso(|e|log|v|)inaconnectedgraph,where|v|−1≤ 

|e|. 
 



 

 

 

 

 

Figure3.14applicationofprim’salgorithm.theparenthesizedlabelsofavertexinthemiddle 

Columnindicatethenearesttreevertexandedge weight;selectedverticesandedgesareinbold. 



 

 

 Kruskal'salgorithm 

Kruskal’salgorithmlooksataminimumspanningtreeofaweightedconnectedgraph g= {v, e} as 

an acyclic subgraph with |v| − 1 edges for which the sum of the edge weights is the smallest. 

Thealgorithm constructs aminimum spanningtreeas an expandingsequenceofsubgraphs that are 

always acyclic but are not necessarily connected on the intermediate stages of thealgorithm. 

The algorithm begins by sorting the graph’s edges in nondecreasing order of their weights. 

Then, starting with the empty subgraph, it scans this sorted list, adding the next edge on the list to 

the current subgraph if such an inclusion does not create a cycle and simply skipping the edge 

otherwise. 

Kruskal’salgorithmlooksataminimumspanningtreeofaweightedconnectedgraph g = (v, e) as 

an acyclic subgraph with |v| − 1 edges for which the sum of the edge weights is the smallest. 

Algorithmkruskal(g) 

//kruskal’salgorithmforconstructingaminimumspanningtree 

//input:aweighted connectedgraph g=(v,e ) 

//output:et,thesetofedgescomposingaminimumspanningtreeof g 

Sorteinnondecreasingorderoftheedgeweights w(ei1)≤...≤w(ei|e|) et← φ; 

ecounter ← 0 //initialize the set of tree edges and its size 

K ← 0 //initializethenumberofprocessed edges 

Whileecounter<|v|−1do 

K← k+1 

Ifet∪{eik}is acyclic 

Et←et∪{eik};ecounter ←ecounter+1 

Returnet 

 

The initial forest consists of |v | trivial trees, each comprising a single vertex of the graph. 

The final forest consists of a single tree, which is a minimum spanning tree of the graph. On each 

iteration, the algorithm takes the next edge (u, v) from the sorted list of the graph’s edges, finds the 

trees containingthevertices u and v, and, ifthese trees arenot thesame,unites them in alargertree by 

adding the edge (u, v). 

 

Fortunately, there are efficient algorithms for doing so, including the crucial check for 

whether two vertices belong to the same tree. They are called union-find algorithms. With an 

efficient union-find algorithm, the running time of kruskal’s algorithm will be o(|e| log |e|). 

 



 

 

 

 

 

 

Figure3.15applicationofkruskal’s algorithm.selectededges areshownin bold. 



 

 

 Dijkstra'salgorithm 

• Dijkstra’salgorithmsolvesthesingle-sourceshortest-pathsproblem. 

• Foragivenvertexcalled thesourceinaweighted connected graph,findshortestpathstoall its 

other vertices. 

• The single-source shortest-paths problem asks for a family of paths, each leading from the 

source to a different vertex in the graph, though some paths may, of course, have edges in 

common. 

• The most widely used applications are transportation planning and packet routing in 

communication networks including the internet. 

• Italsoincludesfinding shortest pathsinsocialnetworks,speech recognition,document 

formatting, robotics, compilers, and airline crew scheduling. 

• Intheworldofentertainment,onecanmentionpathfindinginvideogamesandfinding best 

solutions to puzzles using their state-space graphs. 

• Dijkstra’salgorithmisthebest-knownalgorithmforthesingle-sourceshortest-paths problem. 

 

Algorithmdijkstra(g,s) 

//dijkstra’salgorithmforsingle-sourceshortestpaths 

//input:aweightedconnectedgraph g=(v,e)withnonnegativeweightsanditsvertexs 

//output:thelengthdvofashortestpathfromstovanditspenultimatevertexpvforevery 

// vertex vinv 

Initialize(q)//initializepriorityqueuetoempty 

Foreveryvertexvin v 

Dv← ∞; pv← null 

Insert(q,v,dv)//initializevertexpriorityinthepriorityqueue 

Ds←0;decrease(q,s,ds)//updatepriorityofswithds vt← φ 

Fori ←0to|v|−1do 

U*←deletemin(q)//deletetheminimumpriorityelement 

Vt←vt∪{u*} 

Foreveryvertex uinv−vtthatisadjacenttou*do if du
*+ 

w(u*, u) < du 

Du←du
*+w(u*,u);pu←u* 

decrease(q, u, du) 

The time efficiency of dijkstra’s algorithm depends on the data structures used for 

implementing the priority queue and for representing an input graph itself. It is in θ (|v |2) for graphs 

represented by their weight matrix and the priority queue implemented as an unordered array. For 

graphs represented by their adjacency lists and the priorityqueue implemented as a min- heap, it is 

in o(|e| log |v |). 

 



 

 

 

 

Figure3.16applicationofdijkstra’salgorithm.thenextclosestvertexisshowninbold 

The shortest paths (identified by following nonnumeric labels backward from a destination 

vertex in the left column to the source) and their lengths (given by numeric labels of the tree 

vertices) are as follows: 

From a to b : a − b of length 3 

fromatod:a−b−doflength5 fromato 

c: a −b−coflength7 

Fromatoe :a−b −d−eof length9 

 
 Huffmantrees 

To encode atext that comprisessymbols from some n-symbol alphabet byassigningto each of 

the text’s symbols some sequence of bits called the codeword. For example, we can use a fixed- 

length encoding that assigns to each symbol a bit string of the same length m (m ≥ log2 n). This is 

exactly what the standard ascii code does. 

Variable-length encoding, which assigns codewords of different lengths to different 

symbols, introduces a problem that fixed-length encoding does not have. Namely, how can we tell 

how many bits of an encoded text represent the first (or, more generally, the ith) symbol? To avoid 

this complication, we can limit urselvesto the so-called prefix-free (or simply prefix) codes. 

In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, withsuch 

an encoding, we can simply scan a bit string until we get the first group of bits that is a codeword 

for some symbol, replace these bits bythis symbol, and repeat this operation until the bit string’s 

end is reached. 



 

 

Huffman’salgorithm 

Step 1initialize n one-node trees and label them with the symbols of the alphabet given. 

Record the frequency of each symbol in its tree’s root to indicate the tree’s weight. 

(more generally, the weight of a tree will be equal to the sum of the frequencies in 

the tree’s leaves.) 

Step 2repeat the following operation until a single tree is obtained. Find two trees withthe 

smallest weight (ties can be broken arbitrarily, but see problem 2 in thissection’s 

exercises). Make them the left and right subtree of a new tree and record the sum of 

their weights in the root of the new tree as its weight. 

A tree constructed by the above algorithm is called a huffman tree. It defines in themanner 

described above is called a huffman code. 

 

Example consider the five-symbol alphabet {a, b, c, d, _} with the following occurrence 

frequencies in a text made up of these symbols: 

Symbol A B C D _ 

Frequency 0.35 0.1 0.2 0.2 0.15 

Thehuffmantreeconstructionforthisinputisshowninfigure 3.18 
 

Figure3.18exampleofconstructingahuffmancodingtree. 



 

 

 

Theresultingcodewordsareas follows: 

 

Symbol A B C D _ 

Frequency 0.35 0.1 0.2 0.2 0.15 

Codeword 11 100 00 01 101 

Hence, dad is encoded as 011101, and 10011011011101 is decoded as bad_ad. Withthe 

occurrence frequencies given and the codeword lengths obtained, the average number of bitsper 

symbol in this code is 2 . 0.35 + 3 . 0.1+ 2 . 0.2 + 2 . 0.2 + 3 . 0.15 = 2.25. 

 

We used a fixed-length encoding for the same alphabet, we would have to use at least 3 bits 

per each symbol. Thus, for this toy example, huffman’s code achieves the compression ratio - a 

standard measure of a compression algorithm’s effectiveness of (3− 2.25) / 3 ∙ 100% = 25%. In 

other words, huffman’s encoding of the text will use 25% less memory than its fixed-length 

encoding. 

Runningtimeis o(n logn),aseach priorityqueueoperationtakes timeo(log n). 

 
Applicationsofhuffman’sencoding 

1. Huffman’sencodingisavariablelengthencoding,sothatnumberofbitsusedarelesser than fixed 

length encoding. 

2. Huffman’s encodingisveryusefulforfile compression. 

3. Huffman’s codeisusedintransmissionofdatainanencodedformat. 

4. Huffman’s encodingisusedindecisiontrees andgame playing. 
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Unitiviterativeimprovement 

 

 Thesimplexmethod 

Linearprogramming 

Linear programming problem (lpp) is to optimize a linear function of several variables subject to 

linear constraints: 

Maximize(orminimize)c1x1+...+cnxn 

Subject to ai1x1+ ...+ ain xn≤ (or ≥ or =) bi , i = 1,...,m x1≥0,...,xn≥0 the 

function z = c1x1+ ...+ cnxnis called the objective function; 

Constraintsx1 ≥ 0,..., xn≥0 arecalled nonnegativity constraints 

 

Example 

Maximize 3x+5y 

Subjectto x +y≤ 4 

X+ 3y≤6 

X≥ 0,y≥0 

Feasibleregionisthesetofpointsdefinedbythe constraints 

Y 
 
 
 
 
 
 

 
X+3 

 
 
 
 
 

 
X 

 

 
Geometricsolution 

Y 
 
 
 
 
 
 
 
 

 
(0,2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(3,1) 

X+y=4 

 
 

(0,0) (4,0) 

 
 
 

 

Optimalsolution:x=3,y=1 

X

3x+5y=20 

3x+5y=14 

3x+5y=10 



 

 

Extreme point theoremany lp problem with a nonempty bounded feasible region has an optimal 

solution; moreover, an optimal solution can always be found at an extreme point of the problem's 

feasible region. 

 

Threepossibleoutcomesinsolvinganlpproblem 

• Has a finite optimal solution, which maynot beunique 

• Unbounded:theobjectivefunctionofmaximization(minimization)lpproblemisunbounded 

from above (below) on its feasible region 

• Infeasible:therearenopointssatisfyingalltheconstraints,i.e.theconstraintsare contradictory 

 

Thesimplexmethod 

• The classic method for solving lp problems; 

one of the most important algorithms ever invented. 

• Inventedbygeorgedantzigin1947. 

• Basedontheiterativeimprovement idea. 

• Generatesasequenceof adjacentpointsoftheproblem’sfeasibleregionwithimproving values 
of the objective function until no further improvement is possible. 

 

Standardformoflpproblem 

• Mustbeamaximization problem 

• Allconstraints(exceptthenonnegativityconstraints)mustbeintheformoflinear equations 

• Allthevariablesmustbe requiredtobenonnegative 

• Thus, the general linear programming problem in standard form with m constraints 

and n unknowns (n ≥ m) is 

• Maximizec1x1+...+cnxn 

• Subject toai1x1+...+ainxn=bi,i =1,...,m, x1 ≥ 0, ... , xn≥ 0 

 

Example 

Maximize3x +5y maximize3x+5y+0u +0v 

Subjectto X+y ≤ 4 Subjectto X+y+u =4 

 X+3y≤ 6  X+3y +v=6 

 X≥0,y≥0  X≥0,y≥0, U≥0,v≥0 

 

Variablesuandv,transforminginequalityconstraintsintoequalityconstrains,arecalledslack variables 

 

Basicfeasible solutions 

A basic solution to a system of m linear equations in n unknowns (n ≥ m) is obtained by setting n – 

m variables to 0 and solving the resulting system to get the values of the other m variables.the 

variables set to 0 are called nonbasic; the variables obtained bysolving the system are called basic. 

Abasicsolutioniscalled feasibleifallits(basic)variablesarenonnegative. 

Examplex +y+u=4 

X+3y+v=6 

(0,0,4,6)isbasicfeasible solution 



 

 

(x, yarenonbasic;u, vare basic) 

Thereisa1-1correspondencebetweenextremepointsoflp’sfeasibleregionanditsbasicfeasible 

Solutions. 

 

Simplextableau 

Maximize z = 3x + 5y + 0u + 0v 

subjectto  x+y+u =4 

X+3y +v=6 

X≥0,y≥0,u≥0,v≥0 

 

X y u v 

U

 

v 

 

Objectiverow 

Basicvariables=u,v 

Basicfeasiblesolution=(0,0, 4, 6) 

Valueofz at (0,0, 4, 6) =0 

 

Outlineofthesimplex method 

Step0[initialization]presentagivenlpprobleminstandardformandsetupinitial tableau. 

Step 1 [optimality test] if all entries in the objective row are nonnegative then stop: the tableau 

represents an optimal solution. 

Step 2 [find entering variable] select the most negative entry in the objective row.mark its column 

to indicate the entering variable and the pivot column. 

Step 3 [find departing (leaving) variable]for each positive entry in the pivot column, calculatethe θ-

ratio by dividing that row's entry in the rightmost column (solution) by its entry in the pivot 

column.(if there are no positive entries in the pivot column then stop: the problem is 

unbounded.)Find the row with the smallest θ-ratio, mark this row to indicate the departing 

variable and the pivot row. 

Step 4 [form the next tableau] divide all the entries in the pivot row by its entry in the pivot 

column. Subtract from each of the other rows, including the objective row, the new pivot 

row multiplied by the entry in the pivot column of the row in question. Replace the label of 

the pivot row by the variable's name of the pivot column and go back to step 1. 

 

Exampleofsimplexmethodapplication 

0 0 0 5 3 

6 1 0 3 1 

4 0 1 1 1 



 

 

2 

3 

1 
3 

0 1 
1 

3 

1 

3 

2 

1 0 2 

 

 

U

 

y 

 

 
4 
3 

0 0 
5 
3 

10  

 
    

Basicfeasiblesol.(0, 2, 2,0)z =10 

X Y U V 
  

X 1 0 3/2 1/3 3 
 

Y 0 1 1/2 1/2 1 
 

 
0 0 2 1 14  

Basicfeasiblesol.(3, 1,0, 0)z =14 

 

Notesonthesimplexmethod 

• Findinganinitialbasic feasiblesolutionmaypose a problem. 

• Theoreticalpossibilityof cycling. 

• Typicalnumberofiterationsisbetweenmand3m,wheremis the number of equality constraints 

in the standard form. 

• Worse-caseefficiencyis exponential. 

• More recent interior-point algorithms such as karmarkar’salgorithm (1984) have polynomial 
worst-case efficiency andhave performed competitively with the simplex method 

inempirical tests. 

 

Example1: 

Usesimplexmethodtosolvetheformersproblem givenbelow. 

 x y u v   

u 1 1 1 0 4 

v 1 3 0 1 6 
 

 
3 5 0 0 0 

 

 

 

x 

 

y 
 

u 

 

v 

 

basicfeasiblesol.(0, 0,4, 6)z =0 

 



 

 

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For 

eachacreofcornplanted,herexpensesare$50andforeachacreofsoybeansplanted,herexpensesare 

$100.eachacreofcornrequires100bushelsofstorageandyieldsaprofitof$60;eachacreof 



 

 

Soybeans requires 40 bushels of storage and yields a profit of $90. If the total amount of storage 

space available is 19,200 bushels and the farmer has only $20,000 on hand, how many acres ofeach 

crop should she plant in order to maximize her profit? What will her profit be if she follows this 

strategy? 

Solution 

Linearprogrammingproblemformulation 

 

 

 

Afarmerhasa320acrefarmisunwanteddatabutc+s<=320. C = 

corn planted acres and s = soybean planted acres 

50c+100s≤ 20,000 

100c+40s≤ 19,200 

Maximize:60c+90s=p 

 

Canonicalformoflpp 

Maximize:60c +90s 

Subjectto 50c+100s =20000 

100c+40s=19200 

C≥ 0, s≥ 0 

 

Solvingbyalgebra(intersectionof lines) 

Maximize: 60c+90s 

Subjectto 50c+100s =20000 (1) 

100c+40s=19200 (2) 

(1)/50=>c+2s= 400 

(2)/20=>5c+2s=960 

(2)–(1)=> 4c= 560 

C= 140 

Substitutec=140 in(1)then s=130 

Profit:p=60c+90s=60(140) +90(130)=$20,100 

Sheshouldplant140acrescornand130acresof soybeanfor$20,100. 

 

Solvingbygraphicalmethod 

 Corn Soybean Total 

Expenses $50 $100 $20,000 

Storage(bushels) 100 40 19,200 

Profit 60 90 Maximizeprofit 

 



 

 

100 

 

 

Profitat(0,200)=60c + 90s=60(0)+90(200)= $18,000 

Profit at(192,0)=60c + 90s=60(192)+90(0)= $11,520 

Profitat(140,130)=60c +90s=60(140) +90(130)= $20,100 

Sheshouldplant140acrescornand130acresof soybeanfor$20,100. 

 

Solvingbysimplexmethod 

Canonicalformof lpp 

Maximize:60x +90y 

Subjectto 50x+100y+ s1=20000 

100x+40y+s2=19200 

X≥ 0,y≥ 0 

Iterationi 

 

  

 

Select the most negative value in row z. 

Pivot element :intersectionofpivotrowandpivotcolumn:100 

basic variables : s1, s2,z 

Non basic variables :x,y 

enter variable : y 

Leavevariable : s1 

Initialsolutionat(x,y,s1,s2)=(0,0,20000,19200) initial 

solution z = 0 

 

Pivotrow: 

Replacetheleavingvariableinbasiccolumnwiththeenteringvariable. New 

pivot row = current pivot row / pivot element 

Allotherrowsincludingz: 

Newrow=currentrow–(itspivotcolumncoefficient)*newpivotrow 

Selectleastratioɵ 

Solution/pivotelements 

20000/100 =200 √ 

Basic z x y s1 s2 Solution 

s1 0 50  100 1 0 20000 
 

s2 0 100 40 0 1 19200 

z 1 -60 -90 0 0 0 

 

CPR 



  

 

 

80 

Basic z x y s1 s2 Solution 

y 0 1/2 1 1/100 0 200 

s2 0 
 80 0 -4/10 1 11200 
 

z 1 -15 0 9/10 0 18000 

 

CPR 

Selectleastratioɵ 

Solution/pivotelements 

200/(1/2) =400 

 

Row y  

Newpivotrow=currentpivotrow/pivot element 

=(0, 50, 100, 1, 0, 20000) /100 

 

Rows2 

=(0, 
1 
, 1, 

2 

1 
 

 

100 
, 0, 200) 

Newrow=currentrow–(itspivotcolumncoefficient)*newpivotrow 

 

 

 

Rowz 

=(0, 100, 40, 0, 1, 19200)-(40)*(0, 

−4 

=(0,80,0,
10

,1,96) 

1 
, 1, 

2 

1 
 

 

100 
, 0, 200) 

Newrow=currentrow–(itspivotcolumncoefficient)*newpivotrow 

=(1, -60, -90, 0,0, 0)-(-90)*( 0, 
1 
, 1, 

2 
1 

1 
 

 

100 
1 

, 0, 200) 

=(1, -60, -90, 0,0, 0)+(90)*(0, 
9 

=(1,-15, 0,
10

, 0,18000) 

, 1, 
2 

 
 

100 
, 0, 200) 

 

Iterationii 

 

 

 

 

Select the most negative value in row z. 

Pivot element :intersectionofpivotrowandpivotcolumn:80 

basic variables : y, s2,z 

Non basic variables :x,s1 

enter variable  x 

Leavevariable : s2 

Secondsolutionat(x,y,s1,s2)=(0,200,0,11200) second 

solution z = 18000 (improved solution) 

 

Rowx 

Newpivotrow=currentpivotrow/pivot element 
−4 

=(0,80,0,
10

,1,11200)/80 

=(0,1, 0, 
−1 

200
,
 

1 

80
,140) 

Basic z x y s1 s2 Solution 

y 0 1/2 1 1/100 0 200 

s2 0 80 0 -4/10 1 96 

z 1 -15 0 9/10 0 18000 

 

NPR 



  

  

 

 

9 

9 

−1 

Newrow=currentrow–(itspivotcolumncoefficient)*newpivotrow 

=(0, 1/2, 1, 1/100, 0,200)-( )*(0,1,0, 
2 

−1 

200
,
 

1 

80
,140) 

 

Rowz 

=(0, 0, 1, 
1 

80
,
 
−1 

 
 

160 
, 130) 

Newrow=currentrow–(itspivotcolumncoefficient)*newpivotrow 

=(1, -15, 0,
10

,0, 18000)-(-15)*(0,1,0, , 
1 

, 140) 
 

=(1, -15, 0,
10

,0, 18000)+(15)*(0,1,0, 

200 
−1 

, 
200 

80 
1 

80
,140) 

 

Iterationiii 

=(1, 0, 0, 
33 

40
,
 

15 

80
,20100) 

Basic Z X Y S1 S2 Solution 

Y 0 0 1 1/80 -1/160 130 

X 0 1 0 -1/200 1/80 140 

Z 1 0 0 33/40 15/80 20100 

 

Theabovetablehasnonegativevaluesinrowz. Therefore, 

the above table is optimum table. 

Profitat(140,130)=60c +90s=60(140) +90(130)= $20,100 

Final solution at (x, y, s1,s2) = (130, 140, 0, 0) 

finalsolutionz=$20,100(optimizedsolution) 

 

Primaltodualconversion(dualto primal) 

[primal=dualofdual] 

Primal 

Maximize 

 

 

 

Subjectto: 
𝑛 

∑𝑎𝑖j𝑥j 

J=1 

 
𝑛 

𝑧=∑𝑐j𝑥j, 

J=1 
 
 

 

≤𝑏𝑖 (i=1,2,...,m), 

 
Dual 

 

 

Minimize 

𝑥j≥0 (j=1,2,...,n). 
 

 
𝑚 

 

 
Subjectto: 

𝑚 

∑ 𝑎𝑖j𝑦𝑖 

𝑖=1 

𝑧′=∑𝑏𝑖𝑦𝑖, 

𝑖=1 
 
 
 

≥𝑐j (j=1,2,...,n), 

𝑦𝑖≥0 (i=1,2,...,m). 

1 



  

  

 

 

Theprimalproblem 

Minimize 4x1+2x2−x3 

Subjectto x1+x2+ 2x3≥ 3 

2x1− 2x2+4x3≤ 5 

X1,x2,x3≥0. 

Thedual problem 

Maximize 3y1 + 5y2 

subjectto y1+2y2 ≤4 

Y1 − 2y2 ≤ 2 

2y1+4y2≤−1 y1 

≥ 0, y2 ≥0 



  

  

 

 

 

 Themaximum-flowproblem 

 

Maximumflowproblem 

Problem of maximizing the flow of a material through a transportation network (e.g., 

pipeline system, communications or transportation networks) 

Formallyrepresentedbyaconnectedweighteddigraphwithnverticesnumberedfrom1ton 

Withthefollowingproperties: 

• Containsexactlyonevertexwithnoenteringedges,calledthesource(numbered 1) 

• Containsexactlyonevertexwithnoleavingedges,calledthesink(numberedn) 

• Has positive integer weight uijon each directed edge (i.j),called theedge capacity,indicating 

the upper bound on the amount of the material that can be sent from i to j through this edge. 

• Adigraphsatisfyingthesepropertiesiscalledaflownetworkorsimplya network. 

 

Exampleofflownetwork 

Node(1)=source 

node(6) = sink 

 

Definitionofa flow 

A flow is an assignment of real numbers xijto edges (i,j) of a given network that satisfy the 

following: 

• Flow-conservationrequirements 

Thetotalamountofmaterialenteringanintermediatevertexmustbeequaltothetotal amount of the 

materialleaving the vertex 

• Capacityconstraints 

0≤ xij≤ uijforeveryedge(i,j) e 

 

Flowvalueandmaximumflow problem 

Sinceno material can be lost oradded to bygoing through intermediatevertices ofthenetwork, the 

total amount of the material leaving the source must end up at the sink: 

∑x1j=∑xjn 

J:(1,j)єej:(j,n)єe 

The value of the flow is defined as the total outflow from the source (= the total inflow into the 

sink). Themaximumflow problem is to findaflowofthelargest value(maximum flow)fora given 

network. 



  

  

 

 

 

Maximum-flowproblemaslpproblem 

Maximizev=∑x1j 

J:(1,j)e 

Subjectto  

∑xji- ∑xij =0 fori =2, 3,…,n-1 

J:(j,i) e j:(i,j) e 

0≤xij≤uijforeveryedge (i,j) e 

 

Augmentingpath(ford-fulkerson)method 

• Startwiththezeroflow(xij=0foreveryedge). 

• On each iteration, try to find a flow-augmenting path from source to sink, which a path 

along which some additional flow can be sent. 

• If a flow-augmenting path is found, adjust the flow along the edges of this path to get a 
flow of increased value and try again. 

• If noflow-augmentingpathisfound,thecurrent flowismaximum. 

Example1 

 

Augmentingpath: 1→2→3 →6 

Xij/uij 

 

 

 

Augmentingpath: 1 →4→3←2 →5 →6 

Example1(maximumflow) 



  

  

 

 

 

 

Findingaflow-augmentingpath 

To find a flow-augmenting path for a flow x, consider paths from source to sink in the underlying 

undirected graph in which any two consecutive vertices i,j are either: 

• Connectedbyadirectededge(i toj)with somepositiveunused capacityrij=uij–xij 

– Knownasforwardedge( →) 

Or 

• Connectedbyadirected edge (jto i)with positiveflow xji 

– Knownasbackwardedge(←) 

Ifaflow-augmentingpathisfound,the currentflow canbe increasedbyrunitsbyincreasing xijby 

R on each forward edge and decreasing xji by r on each backward edge, where 

 

R=min{rijonallforwardedges,xjionallbackward edges} 

• Assumingtheedgecapacities areintegers,ris apositiveinteger 

• Oneachiteration,theflowvalueincreasesbyatleast1 

• Maximumvalueisboundedbythesumofthecapacitiesoftheedgesleavingthesource; hence 

the augmenting-path method has to stop after a finite number of iterations 

• Thefinalflowisalwaysmaximum,itsvaluedoesn’tdependonasequenceof 

Augmentingpathsused 

Performancedegenerationofthemethod 

• Theaugmenting-pathmethoddoesn’tprescribeaspecificwayforgeneratingflow- 

augmenting paths 

• Selectingabadsequence ofaugmentingpathscouldimpactthemethod’s efficiency 

 

 

 

Example2 



  

  

 

 

 

 

 

 

 

 

1→2→4→3 

 

 

 

 

 

 

 

1→4←2→3 v=1 

 

 

 

 

 

 

 

 

V=2 

… 

 

 

 

 

 

 

 

V=2u 

Requires2uiterationstoreachmaximumflowofvalue 2u 

 

Shortest-augmenting-pathalgorithm 

Generateaugmentingpathwiththeleastnumberofedgesbybfsasfollows. 

Startingatthesource,performbfstraversalbymarkingnew(unlabeled)verticeswithtwo labels: 

• First label – indicates the amount of additional flow that can be brought from the 

source to the vertex being labeled 

• Secondlabel –indicatesthevertex fromwhichthe vertex beinglabeledwas reached, 

with “+” or“–”added to the second label to indicate whether the vertex was reached 

via a forward or backward edge 

Vertexlabeling 

• Thesourceisalwayslabeledwith∞,- 

• Allotherverticesarelabeledas follows: 

o If unlabeled vertex j is connected to the front vertex i of the traversal queue by a 
directed edge from i to j with positive unused capacity rij = uij –xij(forward edge), 
vertex j is labeled with lj,i

+, where lj= min{li, rij} 



  

  

 

 

o If unlabeled vertex j is connected to the front vertex i of the traversal queue by a 
directed edge from j to i with positive flow xji(backward edge), vertex j is labeled lj,i

-

, where lj= min{li, xji} 

• Ifthesinkendsupbeinglabeled,thecurrentflowcanbeaugmentedbytheamount 

Indicatedbythe sink’sfirst label. 

• The augmentation of the current flow is performed along the augmenting path traced by 

following the vertex second labels from sink to source; the current flow quantities are 

increased on the forward edges and decreased on the backward edges of this path. 

• If thesinkremainsunlabeledafterthetraversalqueuebecomesempty,the algorithmreturns the 

current flow as maximum and stops. 

 

Example:shortest-augmenting-pathalgorithm 
 

Queue:124356 

↑↑↑↑ 

Augmentthe flowby2(thesink’sfirstlabel) alongthepath 1→2→3→6 
 



  

  

 

 

Queue:143256 

↑↑↑↑↑ 

Augmentthe flowby1(thesink’sfirstlabel) alongthepath 1→4→3←2→5→6 
 

Queue:14 

↑↑ 

Noaugmentingpath(the sinkisunlabeled)thecurrentflowismaximum 

Definitionofacut 

Let x be a set of vertices in a network that includes its source but does not include its sink, and let 

x, the complement of x, be the rest of the vertices including the sink.the cut induced by this 

partition of the vertices is the set of all the edges with a tail in x and a head in x. 

Capacityofa cutisdefined asthesum ofcapacitiesof theedgesthat composethecut. 

• →e’lldenoteacutanditscapacitybyc(x,x)and c(x,x) 

• Notethatifalltheedgesofacutweredeletedfromthenetwork,therewouldbeno directed path 

from source to sink 

• Minimumcutisacut of thesmallestcapacityin a given network 

 

Examplesofnetwork cuts 

Ifx={1}andx={2,3,4,5,6},c(x,x)={(1,2), (1,4)},c=5 

Ifx={1,2,3,4,5} andx={6},c(x,x)={(3,6),(5,6)},c=6 

Ifx={1,2,4}andx={3,5,6},c(x,x)={(2,3),(2,5),(4,3)},c =9 



  

  

 

 

 

Max-flowmin-cuttheorem 

1. Thevalue ofmaximum flowin anetworkisequal to the capacityof its minimum cut 

2. Theshortestaugmentingpathalgorithmyieldsboth amaximum flowand aminimum cut: 

• Maximumflow isthe final flow produced bythealgorithm 

• Minimumcutisformedbyalltheedgesfromthelabeledverticestounlabeled vertices on 

the last iteration of the algorithm. 

• All the edges from the labeled to unlabeled vertices are full, i.e., their flow amounts 

are equal to the edge capacities, while all the edges from the unlabeled to labeled 

vertices, if any, have zero flow amounts on them. 

 

Algorithmshortestaugmentingpath(g) 

//implementstheshortest-augmenting-path algorithm 

//input:anetworkwithsinglesource1,singlesinkn,andpositiveintegercapacitiesuijon 

// itsedges (i,j ) 

//output:amaximumflowx 

Assignxij=0to everyedge(i,j )inthenetwork 

Labelthesourcewith∞,−and add thesourceto theemptyqueueq 

Whilenotempty(q)do 

I←front(q);dequeue(q) 

Foreveryedgefromitojdo//forwardedges 

If j is unlabeled 

Rij←uij−xij 

Ifrij>0 

Lj←min{li,rij};labeljwithlj,i+ 

Enqueue(q,j) 

Foreveryedgefromjtoido//backwardedges 

If j is unlabeled 

Ifxji>0 

Lj←min{li,xji};labeljwithlj,i− 

enqueue(q, j ) 

Ifthesinkhasbeen labeled 

//augmentalongtheaugmentingpath found 

J←n//startatthesink andmovebackwardsusingsecond labels 

Whilej≠1//thesourcehasn’tbeen reached 

Ifthesecondlabelofvertexjisi+ 

xij←xij+ ln 

Else//thesecondlabelofvertexjisi− xij←xij 

−ln 

J←i;i←thevertexindicatedbyi’ssecondlabel erase 

all vertex labels except the ones of the source reinitialize 

q with the source 

Returnx//thecurrentflowismaximum 



  

  

 

 

Timeefficiency 

• The number of augmenting paths needed by the shortest-augmenting-path algorithm 

never exceeds nm/2, where n and m are the number of vertices and edges, respectively. 

• Since the time required to find shortest augmenting path by breadth-first search is in 

o(n+m)=o(m) for networks represented by their adjacency lists, the time efficiency of 

the shortest-augmenting-path algorithm is in o(nm2) for this representation. 

• Moreefficientalgorithmshavebeenfoundthatcanruninclosetoo(nm)time,butthese 

algorithms don’t fall into the iterative-improvement paradigm. 

 

 

 Maximummatchinginbipartitegraphs 

Bipartite graphs 

Bipartitegraph:agraphwhoseverticescanbepartitionedintotwodisjointsetsvandu,not necessarily of the 

same size, so that every edge connects a vertex in v to a vertex in u. 

 

Agraphis bipartiteif andonlyifit doesnot haveacycleof anodd length. 
 

 

A bipartite graph is 2-colorable: the vertices can be colored in two colors so that every 

edgehas its vertices colored differently 

 

Matchinginagraph 

 

Amatchinginagraphisasubsetofitsedgeswiththepropertythatnotwoedgessharea vertex 

Amatchinginthis graphm ={(4,8), (5,9)} 



  

 

 

 

Amaximum(ormaximumcardinality)matchingisamatchingwiththelargestnumberofedges 

• Alwaysexists 

• Notalwaysunique 

 

Freeverticesandmaximummatching 

For a given matching m, a vertex is called free (or unmatched) ifit is not an end point of anyedge in 

m; otherwise, a vertex is said to be matched 

• Ifeveryvertexismatched,thenmisa maximummatching 

• Ifthere areunmatched orfreevertices,then mmaybeable to be improved 

• Wecanimmediatelyincrease amatchingbyaddinganedge connectingtwo 

free vertices (e.g., (1,6) above) 

• Matchedvertex=4,5, 8,9. Freevertex=1,2, 3,6, 7,10. 

 

 

Augmentingpathsandaugmentation 

An augmenting path for a matching m is a path from a free vertex in v to a free vertex in u whose edges 

alternate between edges not in m and edges in m 

• Thelengthofanaugmentingpathisalwaysodd 

• Addingtomtheoddnumberedpathedgesanddeletingfromittheevennumberedpath edges 

increases the matching size by 1 (augmentation) 

• One-edgepathbetweentwofreeverticesisspecialcaseofaugmenting path 
 

 

Augmentationalongpath 2,6,1,7 
 



  

 

 

 

 

 

Augmentationalong3,8,4,9,5,10 

Matchingontherightismaximum(perfect matching). 

 

Theorem:amatchingmismaximumifandonlyifthereexistsnoaugmentingpathwith respect to m. 

Augmentingpathmethod(template) 

• Startwithsomeinitial matching.e.g., theemptyset 

• Findanaugmentingpathandaugmentthecurrentmatchingalongthatpath.e.g.,using breadth-first 

search like method 

• Whennoaugmenting pathcanbefound,terminateandreturnthelastmatching,whichis maximum 

 

 Thestablemarriageproblem. 

Stablemarriageproblem 

• There is a set y = {m1,…,mn} of n men and a set x = {w1,…,wn} of n women.each man has a 

ranking list of the women, and each woman has a ranking list of the men (with no ties in 

these lists). 

• Amarriagematchingmisasetofnpairs(mi,wj). 

• A pair (m, w) is said to be a blocking pair for matching m if man m and woman w are not 

matched in m but prefer each other to their mates in m. 

• Amarriagematchingmiscalledstableifthereisnoblockingpairforit;otherwise,it’s 

Calledunstable. 

• Thestablemarriageproblemistofindastablemarriagematchingformen’sandwomen’s 

Givenpreferences. 

 

Instanceofthestablemarriageproblem 

An instance of the stable marriage problem can be specified either by two sets of preference 

lists or by a ranking matrix, as in the example below. 

Men’spreferences women’spreferences 

1st  2nd   3rd   1st  2nd  

 3rdbob:lea ann sue ann:jim tom

 bob jim: lea sue ann lea:tom 

 bob jim tom:  sue  lea  ann

  sue:jim  tom  bob 

 

Rankingmatrix 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 



  

 

 

 

Dataforaninstanceofthestablemarriageproblem.(a)men’spreferencelists;(b)women’spreferencelists.(c) ranking 
Matrix(withtheboxedcellscomposinganunstablematching). 

 

Stablemarriagealgorithm(gale-shapley) 

Step0startwithall themenand women being free 

Step1while therearefreemen, arbitrarilyselectoneof themand do the following: 

o Proposalthe selected free man m proposes to w, the next woman on his preference 
list 

o Responseif w is free, she accepts the proposal to be matched with m.if she is not free, 
shecompares mwith hercurrent mate.if sheprefers m to him, sheaccepts m’s proposal, 
making her former mate free; otherwise, she simply rejects m’s proposal, leaving m 
free 

Step2returnthe setofn matchedpairs 

 

 

Example 

Freemen:bob,jim,tom 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

Bobproposedtolea,leaacceptedbob free 

men: jim, tom 

 

 

 

 

 

 

Jimproposedtolea,learejected free 

men: jim, tom 

 

 

 

 

 

Jimproposedtosue,sueaccepted free 

men: tom 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 



  

 

 

 

 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

Tomproposedtosue,suerejected free 

men: tom 

 

 

 

 

 

 

Tomproposedtolea,leareplacedbobwithtom free 

men: bob 

 

 

 

 

 

 

Bobproposedtoann,annaccepted 

 

Anacceptedproposalisindicatedbyaboxedcell;arejectedproposalisshownbyan underlined cell. 

 

Analysisofthegale-shapleyalgorithm 

• Thealgorithmterminatesafternomorethann2iterationswith a stable marriage output. 

• The stable matching produced by the algorithm is always man-optimal: each man gets the 

highest rank woman on his list under any stable marriage.one can obtain the woman- 

optimal matching by making women propose to men. 

• Aman(woman)optimalmatchingisuniqueforagivensetofparticipantpreferences. 

• The stable marriage problem has practical applications such as matching medical-school 

graduates with hospitals for residency training. 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 

 
Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 



  

 

 

 

Unitv-copingwiththelimitationsofalgorithm power 

 

Limitationsofalgorithm power 

There are many algorithms for solving a variety of different problems. They are very 

powerful instruments, especially when they are executed by modern computers. 

Thepowerofalgorithmsislimitedbecauseofthefollowingreasons: 

• Therearesomeproblemscannot be solved byany algorithm. 

• Therearesomeproblemscan besolvedalgorithmicallybutnot inpolynomial time. 

• There are some problems can be solved in polynomial time bysome algorithms, but 

they are usually lower bounds on their efficiency. 

Algorithmslimitsareidentifiedbythefollowing: 

• Lower-boundarguments 

• Decisiontrees 

• P,npandnp-completeproblems 

 
 Lower-boundarguments 

We can look at the efficiency of an algorithm two ways. We can establish its asymptotic 

efficiency class (say, for the worst case) and see where this class stands with respect to the 

hierarchy of efficiency classes. 

For example, selection sort, whose efficiency is quadratic, is a reasonably fast algorithm, 

whereas the algorithm for the tower of hanoi problem is very slow because its efficiency is 

exponential. 

Lower bounds means estimating the minimum amount of work needed to solve the 

problem. We present several methods for establishing lower bounds and illustrate them with 
specific examples. 

1. Triviallowerbounds 

2. Information-theoreticarguments 

3. Adversaryarguments 

4. Problemreduction 

In analyzing the efficiency of specific algorithms in the preceding, we should distinguish 

between a lower-bound class and a minimum number of times a particular operation needs to be 

executed. 

 
Triviallowerbounds 

The simplest method of obtaining a lower-bound class is based on counting the number of 

items in the problem’s input that must be processed and the number of output items that need to 

be produced. 

Since any algorithm must at least “read” all the items it needs to process and “write” all its 

outputs, such a count yields a trivial lower bound. 

For example, any algorithm for generating all permutations of n distinct items must be in 

Ω(n!) Because the size of the output is n!. And this bound is tight because good algorithms for 

generating permutations spend a constant time on each of them except the initial one. 

Consider the problem of evaluating a polynomial of degree n at a given point x, given its 

coefficients an, an−1, . . . , a0. P(x) = anx
n + an−1x

n−1 + . . . + a0. All the coefficients have to be 

processed by any polynomial-evaluation algorithm. I.e Ω(n). This is tight lower bound. 

Similarly, a trivial lower bound for computing the product of two n × n matrices is Ω(n2) 

because any such algorithm has to process 2n2 elements in the input matrices and generate n2 

elements of the product. It is still unknown, however, whether this bound is tight. 

Thetrivialboundforthe travelingsalesmanproblemisΩ(n2),becauseitsinputisn(n-1)/2 

intercitydistances andits outputisalistofn +1 citiesmakingup anoptimaltour.butthisboundis useless 

because there is no known algorithm with the running time being a polynomial function. 



  

 

 

 

Determining the lower bound lies in which part of an input must be processed by any 

algorithm solving the problem. For example, searching for an element of a given value in a sorted 

array does not require processing all its elements. 

 
Information-theoreticarguments 

The information-theoretical approach seeks to establish a lower bound based ontheamount 

of information it has to produce by algorithm. 

Consider an example “game of guessing number”, the well-known game of deducing a 

positive integer between 1 and n selected bysomebodybyasking that person questions with yes/no 

answers. The amount of uncertainty that any algorithm solving this problem has to resolve can be 

measured by ]log2 n]. 
The number of bits needed to specify a particular number among the n possibilities. Each 

answer to the question gives information about each bit. 

1. Isthe firstbitzero?→ no→firstbitis1 

2. Isthesecondbitzero?→yes→secondbitis0 

3. Isthethirdbit zero?→yes→ thirdbitis0 

4. Isthe forthbitzero? →yes→forthbitis0 

Thenumberinbinaryis 1000,i.e.8indecimalvalue. 

Theabove approach is called the information-theoreticargument because ofits connection 

to information theory. This is useful for finding information-theoretic lower bounds for many 

problems involving comparisons, including sorting and searching. 

Itsunderlyingideacanberealizedthemechanismof decisiontrees. Because 

 

Adversaryarguments 

Adversaryargument is a method of proving by playing a role of adversary (opponent) in 

which algorithm has to work more for adjusting input consistently. 

Consider the game of guessingnumber between positive integer 1 and n byaskinga person 

(adversary) with yes/no type answers for questions. After each question at least one-half of the 

numbers reduced. If an algorithm stops before the size of the set is reduced to 1, the adversary can 

exhibit a number. 

Any algorithm needs ]log2 n] iterations to shrink an n-element set to a one-element set by 

halving and rounding up the size of the remaining set. Hence, at least ]log2 n] questions need to be 

asked by any algorithm in the worst case. This example illustrates the adversary method for 

establishing lower bounds. 

Considertheproblemofmergingtwosortedlistsofsizena1<a2< ...<anandb1<b2<. . 

.<bnintoasinglesortedlistofsize2n.forsimplicity,weassumethatallthea’sandb’sare 

Distinct,whichgivestheproblemaunique solution. 

Merging is done by repeatedly comparing the first elements in the remaining lists and 

outputting the smaller among them. The number of key comparisons (lower bound) in the worst 

case for this algorithm for merging is 2n − 1. 

 
Problemreduction 

Problem reduction is a method in which a difficult unsolvable problem p is reduced to 

another solvable problem b which can be solved by a known algorithm. 

A similar reduction idea can be used for finding a lower bound. To show that problem p isat 

least as hard as another problem q with a known lower bound, we need to reduce q to p (not pto q!). 

In other words, we should show that an arbitrary instance of problem q can be transformed to an 

instanceofproblem p, so anyalgorithm solvingp would solveqas well. Then alowerbound 

forqwillbealowerboundforp.table5.1lists several importantproblemsthatareoften usedfor this 

purpose. 



  

 

 

 

Table5.1problemsoftenusedforestablishinglowerboundsbyproblemreduction 

Problem Lowerbound Tightness 

Sorting Ω(n logn) Yes 

Searchinginasortedarray Ω(logn) Yes 

Elementuniquenessproblem Ω(n logn) Yes 

Multiplicationofn-digitintegers Ω(n) Unknown 

Multiplicationofn×n matrices Ω(n2) Unknown 

Consider the euclidean minimum spanning tree problem as an example of establishing a 

lower bound by reduction: 

Given n points in the cartesian plane, construct a tree of minimum total length whose 

vertices are the given points. As a problem with a known lower bound, we use the element 

uniqueness problem. 

We can transform any set x1, x2, . . . , xn of n real numbers into a set of n points in the 

cartesian plane by simply adding 0 as the points’ y coordinate: (x1, 0), (x2, 0), . . . , (xn, 0). Let t be 

a minimum spanning tree found for this set of points. Since t must contain a shortest edge, checking 

whether t contains a zero length edge will answer the question about uniqueness of the given 

numbers. This reduction implies that Ω (n log n) is a lower bound for the euclideanminimum 

spanning tree problem, 

Note: limitationsofalgorithmcanbestudiedbyobtaininglowerboundefficiency. 

 
 Decisiontrees 

Important algorithms like sorting and searching are based on comparing items of their 

inputs. The study of the performance of such algorithm is called a decision tree. As an example, 

figure 5.1 presents a decision tree of an algorithm for finding a minimum of three numbers. Each 

internal node of a binary decision tree represents a key comparison indicated in the node. 

Figure5.1decisiontreeforfindingaminimumofthreenumbers. 

 

Considerabinarydecisiontreewithheighthandleavesn.andheighth, thenh≥]log2n]. A binary 

tree of height h with the largest number of leaves on the last level is 2h. In other words, 2h ≥ n, 

which puts a lower bound on the heights of binary decision trees. Hence the worst-case number of 

comparisons made by any comparison-based algorithm for the problem is called the information 

theoretic lower bound. 



  

 

 

 

Decisiontreesforsorting 
 

 

Cba 1 

2 3 

Figure5.2decisiontreeforthetree-elementselectionsort. 

A triple above a node indicates the state of the array being sorted. Note two redundant 

comparisons b <a with a single possible outcome because of the results of some previously made 

comparisons. 
 

Figure5.3decisiontreeforthethree-element insertionsort. 

 

The three-element insertion sort whose decision tree is given in figure 5.3, this number is(2 

+ 3 + 3 + 2 + 3 + 3)/6 = 2.66. Under the standard assumption that all n! Outcomes of sorting are 

equally likely, the following lower bound on the average number of comparisons cavg made byany 

comparison-based algorithm in sorting an n-element list has been proved: 

Cavg(n)≥log2n!. 

Decisiontreeisaconvenientmodelofalgorithmsinvolvingcomparisonsinwhich 

• Internalnodesrepresent comparisons 

• Leavesrepresentoutcomes(orinputcases) 

 

Decisiontreesandsortingalgorithms 

• Anycomparison-basedsortingalgorithmcanberepresentedbyadecisiontree(foreach fixed 

n) 

• Numberofleaves (outcomes)n! 



  

 

 

 

• Heightofbinarytreewithn!Leaveslog2n! 

• Minimum number of comparisons in the worst caselog2n! for any comparison- 

basedsortingalgorithm, sincethelongest path representstheworst caseand its length is the 
height 

• log2n!nlog2n(bysterlingapproximation) 

• Thislowerboundistight(mergesortorheapsort) 

 

Decisiontreesforsearchingasortedarray 

Decision treescanbeusedforestablishinglowerbounds on the number ofkeycomparisons 

Insearchingasortedarrayofnkeys: a[0]<a[1]<.. .<a[n −1]. 

Theprincipalalgorithmforthisproblemisbinarysearch. Thenumberofcomparisons made by 

binary search in the worst case, cworst(n), is given by the formula 

Cworst(n)=𝖫log2n]+1=log2(n+1) 

 

Figure5.4ternarydecisiontreeforbinarysearchinafour-elementarray. 
 

Figure5.5binarydecision treeforbinarysearch inafour-elementarray. 

As comparison of the decision trees in the above illustrates, the binary decision tree is 

simply the ternary decision tree with all the middle subtrees eliminated. Applying inequality tosuch 

binary decision trees immediately yields cworst(n) ≥ log2(n + 1)  



  

 

 

 

 P,npandnp-completeproblems 

Problems that can be solved in polynomial time are called tractable, and problems that 

cannot be solved in polynomial time are called intractable. 

Thereareseveral reasonsforintractability. 

• First, we cannot solve arbitrary instances of intractable problems in areasonable 

amount of time unless such instances are very small. 

• Second, although there might be a huge difference between the running times in 
o(p(n))for polynomials of drastically different degrees. Where p(n) is a 

polynomial of the problem’s input size n. 

• Third, polynomial functions possess many convenient properties; in particular, 

both the sum and composition of two polynomials are always polynomials too. 

• Fourth, the choice of this class has led to a development of an extensive theory 

called computational complexity. 

 

Definition: class p is a class of decision problems that can be solved in polynomial time by 

deterministic algorithms. This class of problems is called polynomial class. 

• Problems that can be solved in polynomial time as the set that computer science 
theoreticians call p. A more formal definition includes in p only decision problems, which 

are problems with yes/no answers. 

• Theclassofdecisionproblemsthataresolvableino(p(n))polynomialtime,wherep(n)is 

Apolynomial ofproblem’sinputsizen 

Examples: 

• Searching 

• Element uniqueness 

• Graphconnectivity 

• Graphacyclicity 

• Primalitytesting(finallyprovedin 2002) 

• Therestrictionofptodecision problemscanbejustifiedbythefollowing reasons. 

• First, it is sensible to exclude problems not solvable in polynomial time 

becauseoftheirexponentiallylargeoutput.e.g.,generatingsubsetsofagivenset or all 

the permutations of n distinct items. 

• Second, many important problems that are not decision problems in their 

most natural formulation can be reduced to a series of decision problems that are 

easier to study. For example, instead of asking about the minimum number of 

colors needed to color thevertices ofa graph so that no two adjacent vertices are 

colored the same color. Coloring of the graph’s vertices with no more than m 

colors for m = 1, 2,(the latter is called the m-coloring problem.) 

• So,everydecisionproblemcannotbesolvedinpolynomialtime. Somedecision 

problems cannot be solved at all by any algorithm. Such problems are called 

undecidable, as opposed to decidable problems that can be solved by an 

algorithm (halting problem). 

• Non polynomial-time algorithm: there are manyimportant problems, however, for which 
no polynomial-time algorithm has been found. 

• Hamiltonian circuit problem:determine whether a given graph has a 

hamiltonian circuit—a path that starts and ends at the same vertex and passes 

through all the other vertices exactly once. 

• Traveling salesman problem: find the shortest tourthrough n cities with known 

positive integer distances between them (find the shortest hamiltonian circuit in a 

complete graph with positive integer weights). 



  

 

 

 

• Knapsack problem: find the most valuable subset of n items of given positive 

integer weights and values that fit into a knapsack of a given positive integer 

capacity. 

• Partition problem: given n positive integers, determine whether it is possible to 
partition them into two disjoint subsets with the same sum. 

• Bin-packing problem: given n items whose sizes are positive rational numbers 

not larger than 1, put them into the smallest number of bins of size 1. 

• Graph-coloringproblem:foragivengraph,finditschromaticnumber,whichis the 

smallest number of colors that need to be assigned to the graph’s vertices so that 

no two adjacent vertices are assigned the same color. 

• Integer linear programming problem: find the maximum (or minimum) value 

of a linear function of several integer-valued variables subject to a finite set of 

constraints in the form of linear equalities and inequalities. 

 

Definition: a nondeterministic algorithm is a two-stage procedure that takes as its input an 

instance i of a decision problem and does the following. 

1. Nondeterministic (“guessing”) stage: an arbitrary string s is generated that can bethought 

of as a candidate solution to the given instance. 

2. Deterministic (“verification”) stage: a deterministic algorithm takes both i and s as its 

input and outputs yes if s represents a solution to instance i. (if s is not a solution to instance 

i , the algorithm either returns no or is allowed not to halt at all.) 

Finally, a nondeterministic algorithm is said to be nondeterministic polynomial if the time 

efficiency of its verification stage is polynomial. 

Definition: class np is the class of decision problems that can be solved by nondeterministic 

polynomial algorithms. This class of problems is called nondeterministic polynomial. 

Mostdecisionproblemsareinnp.firstofall,thisclassincludesalltheproblemsinp: 

P⊆np 

This is true because, if a problem is in p, we can use the deterministic polynomial time 

algorithm that solves it in the verification-stage of a nondeterministic algorithm that simplyignores 

string s generated in its nondeterministic (“guessing”) stage. But np also contains the hamiltonian 

circuit problem, the partition problem, decision versions of the traveling salesman, the knapsack, 

graph coloring, and many hundreds of other difficult combinatorial optimization. The halting 

problem, on the other hand, is among the rare examples of decision problems that are known not to 

be in np. 

Note that p = np would imply that each of many hundreds of difficult combinatorial 

decision problems can be solved by a polynomial-time algorithm. 

Definition:a decision problem d1 is said to be polynomially reducible to a decision problem d2, if 

there exists a function t that transforms instances of d1 to instances of d2 such that: 

1. Tmapsallyesinstancesofd1toyesinstancesofd2andallnoinstancesofd1tono instances of d2. 

2. T is computable byapolynomial time algorithm. 

 

This definition immediately implies that if a problem d1 is polynomially reducible to some 

problemd2 that can be solved in polynomial time, then problem d1 can also be solved in 

polynomial time 

 

Definition:adecisionproblemdissaidtobenp-completeifitishardasanyprobleminnp. 

1. Itbelongstoclass np 

2. Everyprobleminnpispolynomiallyreducibletod 
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The fact that closely related decision problems are polynomially reducible to each other is not very 

surprising. For example, let us prove that the hamiltonian circuit problem is polynomiallyreducible 

to the decision version of the traveling salesman problem. 

Npproblems 
 

Figure5.6polynomial-timereductionsofnpproblemstoannp-complete problem 

 

Theorem:adecisionproblemissaidtobenp-completeifitishardasanyprobleminnp. 

Proof: let us prove that the hamiltonian circuit problem is polynomially reducible to the decision 

version of the traveling salesman problem. 

Wecan map a graph gofa given instance ofthe hamiltoniancircuit problem to a complete 

weighted graph g'representing an instance of the traveling salesman problem byassigning 1 as the 

weight to each edge in g and adding an edge of weight 2 between any pair of nonadjacent vertices 

in g. As the upper boundm on the hamiltonian circuit length, we take m = n, where n is the number 

of vertices in g (and g'). Obviously, this transformation can be done in polynomial time. 

Let g be a yes instance of the hamiltonian circuit problem. Then g has a hamiltonian circuit, 

and its image in g'will have length n, making the image a yes instance of the decision traveling 

salesman problem. 

Conversely, if we have a hamiltonian circuit of the length not larger than n in g', then its 

length must be exactly n and hence the circuit must be made up of edges present in g, making the 

inverse image of the yes instance of the decision traveling salesman problem be a yes instance of 

the hamiltonian circuit problem. 

Thiscompletesthe proof. 

 
Theorem: stateandprovecook’stheorem. 

Provethatcnf-satisnp-complete. 

Satisfiabilityofboolean formulaforthreeconjuctivenormal formisnp-complete. 

Np problems obtained by polynomial-time reductions from a np-complete problem 

proof: the notion of np-completeness requires, however, polynomial reducibility of all problems 

innp,bothknownandunknown,totheprobleminquestion.giventhebewilderingvarietyof decision 

problems, it is nothing short of amazing that specific examples of np-complete problems have been 

actually found. 

Nevertheless, this mathematical feat was accomplished independently by stephen cook in 

the united states and leonid levin in the former soviet union. In his 1971 paper, cook [coo71] 

showed that the so-called cnf-satisfiability problem is npcomplete. 

𝑥1 𝑥2 𝑥3 𝑥 1 𝑥 2 𝑥 3 𝑥1𝗏𝑥 2𝗏𝑥 3 𝑥 1𝗏𝑥2 𝑥 1𝗏𝑥 2𝗏𝑥 3 (𝑥1𝗏𝑥 2𝗏𝑥 3)𝖠(𝑥 1𝗏𝑥2)𝖠(𝑥 1𝗏𝑥 2𝗏𝑥 3) 
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The cnf-satisfiability problem deals with boolean expressions. Each boolean expression can 

be represented in conjunctive normal form, such as the following expression involving three 

boolean variables x1, x2, and x3 and their negations denoted 𝑥 1, 𝑥 2, and 𝑥 3respectively: 

 
The cnf-satisfiability problem asks whether or not one can assign values true and false to 

variables of a given boolean expression in its cnf form to make the entire expression true. (it is easy 

to see that this can be done for the above formula: if x1 = true, x2 = true, and x3 = false, the entire 

expression is true.) 

Since the cook-levin discovery of the first known np-complete problems, computer 

scientists have found many hundreds, if not thousands, of other examples. In particular, the well- 

known problems (or their decision versions) mentioned above—hamiltonian circuit, traveling 

salesman, partition, bin packing, and graph coloring—are all np-complete. It is known, however, 

that if p != np there must exist np problems that neither are in p nor are np-complete. 

Showingthatadecisionproblemis np-completecanbedoneintwosteps. 

1. First, one needs to show that the problem in question is in np; i.e., a randomly generated 

string can be checked in polynomial time to determine whether or not it represents asolution 

to the problem. Typically, this step is easy. 

2. The second step is to show that every problem in np is reducible to the problem in 

questionin polynomial time. Because of the transitivity of polynomial reduction, this step 

can be done by showing that a known np-complete problem can be transformed to the 

problem in question in polynomial time. 

The definition of np-completeness immediately implies that if there exists a deterministic 

polynomial-time algorithm for just one np-complete problem, then every problem in np can be 

solved in polynomial time by a deterministic algorithm, and hence p = np. 

Npproblems 
 

Figure5.7np-completenessbyreduction 

 

Examples: tsp, knapsack, partition, graph-coloring and hundreds of other problems of 

combinatorial nature p= np would imply that every problem in np, including all np-complete 

problems, could be solved in polynomial timeif a polynomial-time algorithm for just one np- 

completeproblemisdiscovered,theneveryprobleminnpcanbesolvedinpolynomialtime,i.e.p 

= np most but not all researchers believe that p != np , i.e. P is a proper subset of np. If p != np, then 

the np-complete problems are not in p, although many of them are very useful in practice. 



  

 

 

 

 

 

Figure5.8relationamongp,np,np-hardandnpcomplete problems 

 

 

 Copingwiththelimitationsofalgorithm power 

Therearesomeproblems thataredifficulttosolvealgorithmically. Atthesametime,fewof them 

are so important, we must solve by some other technique. Two algorithm design techniques 

backtracking and branch-and-bound that often make it possible to solve at least some large 

instances of difficult combinatorial problems. 

 

Both backtracking and branch-and-bound are based on the construction of a state-space tree 

whose nodes reflect specific choices made for a solution’s components. Both techniques terminatea 

node as soon as it can be guaranteed that no solution to the problem can be obtained by considering 

choices that correspond to the node’s descendants 

 

Weconsidera few approximationalgorithmsforsolvingtheassignmentproblem,traveling 

salesman and knapsack problems. There are three classic methods like the bisection method, the 

method of false position, and newton’s method for approximate root finding. 

 

Exactsolutionstrategiesaregiven below: 

Exhaustivesearch(bruteforce)- 

• Useful onlyforsmallinstances 

Dynamicprogramming 

• Applicabletosomeproblems(e.g.,theknapsack problem) 

Backtracking 

• Eliminatessomeunnecessarycasesfromconsideration 

• Yields solutions in reasonable time for many instances but worst case is still 

exponential 

Branch-and-bound 

• Furtherrefinesthebacktrackingideaforoptimization problems 

 

 
Copingwiththelimitationsof algorithmpoweraregivenbelow: 

Backtracking 

• N-queensproblem 

• Hamiltoniancircuitproblem 

• Subset-sumproblem 



  

 

 

 

Branch-and-bound 

• Assignmentproblem 

• Knapsackproblem 

• Traveling salesman problem 
approximationalgorithmsfornp-hardproblems 

• Approximationalgorithmsforthetravelingsalesman problem 

• Approximationalgorithmsfortheknapsackproblem 

algorithms for solving nonlinear equations 

• Bisectionmethod 

• Falsepositionmethod 

• Newton’smethod 

 

 Backtracking 

• Backtrackingisamoreintelligentvariation approach. 

• The principal idea is to construct solutions one component at a time and evaluate such 

partially constructed candidates as follows. 

• If a partially constructed solution can be developed further without violating the 
problem’s constraints, it is done by taking the first remaining legitimate option for the 

next component. 

• Ifthereisno legitimateoptionforthenextcomponent,noalternatives foranyremaining 
component need to be considered. In this case, the algorithm backtracks to replace the 

lastcomponent of the partially constructed solution with its next option. 

• It is convenient to implement this kind of processing by constructing a tree of choices 
being made, called the state-space tree. 

• Itsrootrepresentsaninitialstatebeforethesearch forasolutionbegins. 

• Thenodesofthefirstlevelinthetreerepresentthechoicesmadeforthefirstcomponent of a 

solution, the nodes of the second level represent the choices for the second component, 

and so on. 

• A node in a state-space tree is said to be promising if it corresponds to a partially 

constructed solution that may still lead to a complete solution. Otherwise, it is called 

nonpromising. 

• Leaves represent either nonpromising dead ends or complete solutions found by the 

algorithm. In the majority of cases, a statespace tree for a backtracking algorithm is 
constructed in the manner of depthfirst search. 

• If the current node is promising, its child is generated by adding the first remaining 

legitimate option for the next component of a solution, and the processing moves to this 

child. If the current node turns out to be nonpromising, the algorithm backtracks to the 

node’s parent to consider the next possible option for its last component; if there is no 

such option, it backtracks one more level up the tree, and so on. 

• Finally, if the algorithm reaches a complete solution to the problem, it either stops (if 

just one solution is required) or continues searching for other possible solutions. 

• Backtrackingtechniquesareapplied tosolve thefollowingproblems 

• N-queensproblem 

• Hamiltoniancircuitproblem 

• Subset-sumproblem 
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 N-queensproblem 

The problem is to place n queens on an n × n chessboard so that no two queens attack each 

other by being in the same row or in the same column or on the same diagonal. 

Forn=1,theproblem has atrivialsolution. 

 

 

Forn= 2,it iseasyto seethat thereisno solution to place2queens in 2×2chessboard. 

Q  

  

Forn= 3,it iseasyto seethat thereis no solution to place3queens in 3×3chessboard. 
123 

1 

2 
3 

 
Queen1 
Queen2 

 
1 

Or 2 
3 

123 

Queen1 1 

Or 2 
Queen2 3 

123 
Queen1 

Queen2 

For n = 4, there is solution to place 4 queens in 4 × 4 chessboard. The four-queens problem solved by the 

backtracking technique. 

 

Step1:startwiththeemptyboard 
1234 

1 queen1 

2 queen2 
3 queen3 
4 queen4 

 
Step2:placequeen1inthefirstpossiblepositionofitsrow,whichisincolumn1ofrow 1. 

1234 

1 
2 
3 
4 

Step 3: place queen 2, after trying unsuccessfully columns 1 and 2, in the first acceptable position 

for it, which is square (2, 3), the square in row 2 and column 3. 
1234 

1 
2 
3 
4 

Step4:thisprovestobeadeadendbecausethereisnoacceptablepositionforqueen3.so,the algorithm 

backtracks and puts queen 2 in the next possible position at (2, 4). 
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  Q 
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1234 

1 
2 
3 
4 

Step5:thenqueen3isplacedat(3,2),whichprovestobeanotherdeadend. 
1234 

1 
2 
3 
4 

Step6:thealgorithmthenbacktracksall thewaytoqueen1andmoves itto(1,2). 
1234 

1 
2 
3 
4 

Step7:thequeen2goesto(2,4). 
1234 

1 
2 
3 
4 

Step8:thequeen3goesto(3,1). 
1234 

1 

2 
3 
4 

Step9:thequeen3goes to(4,3). Thisis asolutionto the problem. 
1234 

1 
2 
3 
4 

Figure5.9solutionfour-queensproblemin4x4 board. 

 

 

Thestate-spacetreeofthissearchisshowninfigure 12.2 
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Figure 5.10 state-space tree of solving the four-queens problem by backtracking. × denotes 
anunsuccessful attempt to place a queen. 

 

Forn= 8,thereissolutiontoplace8 queensin8×8chessboard. 

12345678 
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Figure5.11solution8-queensproblemin8x8board. 
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 Hamiltoniancircuitproblem 

Ahamiltonian circuit (also called ahamiltonian cycle,hamilton cycle, orhamilton circuit) 

is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once. A graph 

possessing a hamiltonian cycle is said to be a hamiltonian graph. 

 
Figure5.12graphcontainshamiltonian circuit 

Letusconsidertheproblemoffindingahamiltoniancircuitinthegraphinfigure5.13. 

 

Example:findhamiltoniancircuit startsatvertex a. 
 

Figure5.13graph. 

 
Solution: 

• Assume that if a hamiltonian circuit exists, it starts at vertex a. Accordingly, we makevertex 

a the root of the state-space tree as in figure 5.14. 

• In a graph g, hamiltonian cycle begins at some vertex v1∈ g, and the vertices are visited only 

once in the order v1, v2,. . . , vn.(vi are distinct except for v1 and vn+1 which are equal). 

• The first component of our future solution, if it exists, is a first intermediate vertex of a 
hamiltonian circuit to be constructed. Using the alphabet order to break the three-way tie 

among the vertices adjacent to a, we 

• Selectvertexb.fromb,thealgorithmproceedstoc,thentod,thentoe,andfinallytof, 

Whichprovesto be adead end. 

• So the algorithm backtracks from fto e, then to d, and then to c, which provides the first 

alternative for the algorithm to pursue. 

• Going from c to e eventually proves useless, and the algorithm has to backtrack from e to c 

and then to b. From there, it goes to the vertices f , e, c, and d, from which it canlegitimately 

return to a, yielding the hamiltonian circuit a, b, f , e, c, d, a. If we wanted to find another 

hamiltonian circuit, we could continue this process by backtracking from the leaf of the 

solution found. 



  

 

 

 

 

 

Figure5.14state-spacetreeforfindingahamiltonian circuit. 

 

 
 Subsetsumproblem 

The subset-sum problem finds a subset of a given set a = {a1, . . . , an} of n positive 

integerswhose sumisequaltoagivenpositive integerd.forexample,fora={1,2,5,6,8}and d = 9, there 

are two solutions: {1, 2, 6} and {1, 8}. Of course, some instances of this problem may have no 

solutions. 

Itisconvenienttosorttheset’selementsinincreasingorder.so,wewillassumethat 

A1<a2 <. . . <an. 

 

A={3, 5, 6, 7} and d =15 ofthesubset-sum problem. Thenumberinsideanodeis thesum of the 

elements alreadyincluded in the subsets represented bythe node. The inequalitybelow a leaf 

indicates the reason for its termination. 

 

Figure5.15complete state-spacetreeofthebacktrackingalgorithmappliedtothe instance 



  

 

 

 

 

Example: 

• The state-space tree can be constructed as a binary tree like that in figure 5.15 for the 
instancea = {3, 5, 6, 7} and d = 15. 

• The root of the tree represents the startingpoint,with no decisions aboutthe given elements 

made as yet. 

• Itsleft and right children represent, respectively, inclusion and exclusionof a1in a set being 

sought. Similarly, going to the left from a node of the first level corresponds to inclusion of 
a2 while going to the right corresponds to its exclusion, and so on. 

• Thus,apathfromtheroottoanodeontheithlevelofthetreeindicateswhichofthefirsti 

Numbershavebeenincluded inthesubsets representedbythat node. 

• Werecordthevalueofs,thesumofthesenumbers,in the node. 

• If sisequaltod,wehavea solution totheproblem.wecaneither reportthis resultand stop 

Or,if allthe solutionsneed tobe found,continuebybacktrackingtothenode’sparent. 

• If s is not equal to d, we can terminate the node as nonpromising if either of the 

followingtwo inequalities holds: 
𝑠+𝑎i+1>𝑑(thesums is toolarge), 

𝑛j=𝑖+
1 𝑎j<d(thesums istoo small). 

 

Generalremarks 

Fromamoregeneralperspective,mostbacktrackingalgorithmsfitthefollowingescription. An 

output of a backtracking algorithm can be thought of as an n-tuple (x1, x2, . . . , xn) where each 

coordinate xi is an element of some finite lin early ordered set si . For example, for the n-queens 

problem, each si is the set of integers (column numbers) 1 through n. 

 

A backtracking algorithm generates, explicitly or implicitly, a state-space tree; its nodes 

represent partiallyconstructedtuples with thefirst i coordinatesdefined bytheearlieractions ofthe 

algorithm. If such a tuple (x1, x2, . . . , xi) is not a solution, the algorithm finds the next element in 

si+1that is consistent with the values of ((x1, x2, . . . , xi) and the problem’s constraints, and adds it to 

the tuple as its (i + 1)st coordinate. If such an element does not exist, the algorithm backtracks to 

consider the next value of xi, and so on. 

 

 

Algorithmbacktrack(x[1..i]) 

//givesatemplateofa genericbacktrackingalgorithm 

//input:x[1..i]specifiesfirst ipromisingcomponentsofasolution 

//output:allthetuplesrepresentingtheproblem’ssolutions 

If x[1..i]isasolutionwritex[1..i] 

Else //seeproblemthis section 

Foreachelement x∈si+1consistentwithx[1..i]andtheconstraintsdo 

X[i + 1] ← x 

backtrack(x[1..i+1]) 

s+∑ 



  

 

 

 

 Branchandbound 

An optimization problem seeks to minimize or maximize some objective function, usually 

subject to some constraints. Note that in the standard terminology of optimization problems, a 

feasible solution is a point in the problem’s search space that satisfies all the problem’s constraints 

(e.g., a hamiltonian circuit in the travelling salesman problem or a subset of items whose total 

weight does not exceed the knapsack’s capacity in the knapsack problem), whereas an optimal 

solution is a feasible solution with the best value of the objective function (e.g., the shortest 

hamiltonian circuit or the most valuable subset of items that fit the knapsack). 

 

Comparedtobacktracking,branch-and-boundrequirestwoadditionalitems: 

1. A way to provide, for every node of a state-space tree, a bound on the best value of 

the objective function1 on any solution that can be obtained by adding further 

components to the partially constructed solution represented by the node 

2. Thevalueofthebestsolutionseensofar 

 

If this information is available, we can compare a node’s bound value with the value of the 

best solution seen so far. If the bound value is not better than the value of the best solution seen so 

far—i.e., not smaller for a minimization problem and not larger for a maximization problem—the 

node is nonpromising and can be terminated (some people say the branch is “pruned”). Indeed, no 

solution obtained from it can yield a better solution than the one already available. This is the 

principal idea of the branch-and-bound technique. 

 

In general, we terminate a search path at the current node in a state-space tree of a branch- 

and-bound algorithm for any one of the following three reasons: 

1. Thevalue ofthenode’sbound is not betterthanthevalue ofthebest solution seen sofar. 

2. The node represents no feasible solutions because the constraints of the problem arealready 

violated. 

3. The subset of feasible solutions represented by the node consists of a single point (andhence 

no further choices can be made)—in this case, we compare the value of the objective 

function for this feasible solution with that of the best solution seen so far and update the 

latter with the former if the new solution is better. 

 

Someproblemscanbesolved bybranch-and-boundare: 

1. Assignmentproblem 

2. Knapsackproblem 

3. Travelingsalesman problem 



  

 

 

 

 Assignmentproblem 

Letusillustratethebranch-and-boundapproachbyapplyingittotheproblemofassigning n people 

to n jobs so that the total cost of the assignment is as small as possible. An instance of the 

assignment problem is specified by an n × n cost matrix c. 
 

We have to find a lower bound on the cost of an optimal selection without actually solving 

the problem. We can do this by several methods. For example, it is clear that the cost of any 

solution, including an optimal one, cannot be smaller than the sum of the smallest elements in each 

of the matrix’s rows. For the instance here, this sum is 2 + 3+ 1+ 4 = 10. It is important to stressthat 

this is not the cost of any legitimate selection (3 and 1 came from the same column of the matrix); it 

is just a lower bound on the cost of any legitimate selection. We can and will apply the same 

thinking to partially constructed solutions. For example, for any legitimate selection that selects 9 

from the first row, the lower bound will be 9 + 3 + 1+ 4 = 17. 

 

It is sensible to consider a node with the best bound as most promising, although this does 

not, of course, preclude the possibility that an optimal solution will ultimately belong to a different 

branch of the state-space tree. This variation of the strategy is called the best-first branch-and- 

bound. 

 

Thelower-bound valuefortheroot,denoted lb, is10. Thenodes on thefirst level ofthetree 

correspond to selections of an element in the first row of the matrix, i.e., a job for person a asshown 

in figure 5.15. 
 

Figure 5.15 levels 0 and 1 of the state-space tree for the instance of the assignment problem being 

solved with the best-first branch-and-bound algorithm. The number above a node shows the order 

in which the node was generated. A node’s fields indicate the job number assigned to persona and 

the lower bound value, lb, for this node. 

 

. 

Sowehavefourliveleaves(promisingleavesarealsocalledlive)—nodes1through4— 

That may contain an optimal solution. The most promising of them is node 2 because it has the 

smallest lowerbound value. Following our best-first search strategy, we branch out from that node 

first byconsidering the three different ways of selecting an element from the second row and not in 

the second column—the three different jobs that can be assigned to person b (figure 5.16). 



  

 

 

 

 

 

Figure 5.16 levels 0, 1, and 2 of the state-space tree for the instance of the assignment problem 

being solved with the best-first branch-and-bound algorithm. 

 

Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal solution, we again 

choose the one with the smallest lower bound, node 5. First, we consider selecting the third 

column’s element from c’s row (i.e., assigning person c to job 3); this leaves us with no choice but 

to select the element from the fourth column of d’s row (assigning person d to job 4). This yields 

leaf 8 (figure 5.17), which corresponds to the feasible solution {a→2, b→1, c→3, d →4} with the 

total cost of 13. Its sibling, node 9, corresponds to the feasible solution {a→2, b→1, c→4, d →3} 

with the total cost of 25. Since its cost is larger than the cost of the solution represented by leaf 8, 

node 9 is simply terminated. (of course, if its cost were smaller than 13, we would have to replace 

the information about the best solution seen so far with the data provided by this node.) 
 

Figure 5.17 complete state-space tree for the instance of the assignment problem solved withthe 

best-first branch-and-bound algorithm. 

 

Now, as we inspect each of the live leaves of the last state-space tree—nodes 1, 3, 4, 6, and 

7 in figure 5.17—we discover that their lower-bound values are not smaller than 13, the value of 

the best selection seen so far (leaf 8). Hence, we terminate all of them and recognize the solution 

represented by leaf 8 as the optimal solution to the problem. 



  

 

 

 

 Knapsackproblem 

Let us now discuss how we can apply the branch-and-bound technique to solving the 

knapsack problem. Given n items of known weights wiand values vi, i = 1, 2, . . . , n, and a knapsack 

of capacity w, find the most valuable subset of the items that fit in the knapsack. It is convenient to 

order the items of a given instance in descending order by their value-to-weight ratios. Then the 

first item gives the best payoff per weight unit and the last one gives the worst payoff per weight 

unit, with ties resolved arbitrarily: 

V1/w1≥ v2/w2 ≥ .. . ≥ vn/wn. 

It is natural to structure the state-space tree for this problem as a binary tree constructed as 

follows. Each node on the ith level of this tree, 0 ≤ i ≤ n, represents all the subsets of n items that 

include a particular selection made from the firsti ordered items. This particular selection is 

uniquely determined by the path from the root to the node: a branch going to the left indicates the 

inclusion of the next item, and a branch going to the right indicates its exclusion. We record the 

total weight w and the total value v of this selection in the node, along with some upper bound ubon 

the value of any subset that can be obtained by adding zero or more items to this selection. 

Item Weight Value Value/weight Capacity 

1 4 $40 10 
 

W=10 
2 7 $42 6 

3 5 $25 5 

4 3 $12 4 
 W=19 V=119 Vi+1/wi+1=25  

A simple way to compute the upper bound ub is to add to v, the total value of the items 

already selected, the product of the remaining capacity of the knapsack w − w and the best per unit 

payoff among the remaining items, which is vi+1/wi+1: 

Ub =v+(w− w)(vi+1/wi+1). 

=0+(10-0)(10) 

=100 
 

Figure 5.18 state-space tree of the best-first branch-and-bound algorithm for the instance of the 

knapsack problem. 



  

 

 

 

 

 

At the root of the state-space tree (see figure 5.18), no items have been selected as yet. 

Hence, both the total weight of the items already selected w and their total value v are equal to 0. 

The value of the upper bound computed by formula (12.1) is $100. Node 1, the left child of theroot, 

represents the subsets that include item 1. The total weight and value of the items already included 

are 4 and $40, respectively; the value of the upper bound is 40 + (10 − 4)* 6 = $76. Node 2 

represents the subsets that do not include item 1. Accordingly, w = 0, v = $0, and ub = 0 + (10 −0) * 

6 = $60. Since node 1 has a larger upper bound than the upper bound of node 2, it is more 

promising for this maximization problem, and we branch from node 1 first. Its children—nodes 3 

and 4—represent subsets with item 1 and with and without item 2, respectively. 

 

Since the total weight w of every subset represented by node 3 exceeds the knapsack’s capacity, 

node 3 can be terminated immediately. Node 4 has the same values of w and v as its parent; the 

upper bound ub is equal to 40 + (10 − 4) * 5 = $70. Selecting node 4 over node 2 for the next 

branching (why?), we get nodes 5 and 6 by respectively including and excluding item 3. The total 

weights and values as well as the upperbounds for these nodes are computed in the same way as for 

the preceding nodes. Branching from node 5 yields node 7, which represents no feasible solutions, 

and node 8, which represents just a single subset {1, 3} of value $65. The remaining live 

nodes2and6havesmallerupper-boundvaluesthanthevalueofthesolutionrepresentedbynode 

8. Hence, both can be terminated making the subset {1, 3} of node 8 the optimal solution to the 

problem. 

 

Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual 

characteristic. Typically, internal nodes of a state-space tree do not define a point of the problem’s 

search space, because some of the solution’s components remain undefined. If we had done this for 

the instance investigated above, we could have terminated nodes 2 and 6 before node 8 was 

generated because they both are inferior to the subset of value $65 of node 5. 

 

 

 Travelingsalesmanproblem 

We will be able to apply the branch-and-bound technique to instances of the travelling 

salesman problem if we come up with a reasonable lower bound on tour lengths. One very simple 

lower bound can be obtained by finding the smallest element in the intercity distance matrix d and 

multiplying it by the number of cities n. But there is a less obvious and more informative lower 

boundforinstances with symmetricmatrix d,whichdoes notrequirealot ofwork tocompute. Itis not 

difficult to show (problem 8 in this section’s exercises) that we can compute a lower bound on the 

length l of any tour as follows. For each city i, 1≤ i ≤ n, find the sum si of the distances fromcityi to 

the two nearest cities; compute the sum s of these n numbers, divide the result by 2, and, if all the 

distances are integers, round up the result to the nearest integer: 

𝑙𝑏=]𝑠/2] 



  

 

 

 

 

 

 
Figure 5.19 (a)weighted graph. (b) state-space tree of the branch-and-bound algorithm to find a 

shortest hamiltoniancircuit in this graph. Thelist ofvertices in anodespecifiesabeginningpartof the 

hamiltonian circuits represented by the node. 

 
Forexample,fortheinstancein figureand above formulayields 

Lb =][(1+3)+(3+6)+(1+2)+(3+4)+(2+3)]/2]=14. 

Moreover, for any subset of tours that must include particular edges of a given graph, we 

can modify lower bound accordingly. For example, for all the hamiltonian circuits of the graph in 

figurethat must include edge (a, d), we get the following lower bound by summing up the lengths of 

the two shortest edges incident with each of the vertices, with the required inclusion of edges (a, d) 

and (d, a): 

][(1+5)+(3+6)+(1+2)+(3+5)+(2+3)]/2]=16. 

We now apply the branch-and-bound algorithm, with the bounding function given by 

formula, to find the shortest hamiltonian circuit for the graph in figure 5.19a. To reduce 

theamountofpotentialwork.first,withoutlossofgenerality,wecanconsideronlytoursthatstartat 

A.second,becauseourgraphisundirected,wecangenerateonlytoursinwhichbisvisitedbefore 

C. In addition, after visiting n − 1= 4 cities, a tour has no choice but to visit the remaining unvisited 

city and return to the starting one. The state-space tree tracing the algorithm’s application is givenin 

figure 5.19b. 



  

 

 

 

 Approximationalgorithmsfornphardproblems 

Now we are going to discuss a different approach to handling difficult problems of 

combinatorialoptimization,suchasthe travellingsalesmanproblemandtheknapsackproblem. The 

decision versions of these problems are np-complete. Their optimization versions fall in the class of 

np-hard problems—problems that are at least as hard as np-complete problems. Hence, there are 

no known polynomial-time algorithms for these problems, and there are serioustheoretical reasons 

to believe that such algorithms do not exist. 

 

Approximation algorithms runa gamut in level of sophistication; most ofthem arebased on 

some problem-specific heuristic. A heuristic is a common-sense rule drawn from experience rather 

thanfrom amathematicallyproved assertion. For example, goingto thenearest unvisited cityin the 

travelling salesman problem is a good illustration of this notion. 

 

Of course, if we use an algorithm whose output is just an approximation of the actual 

optimal solution, we would like to know how accurate this approximation is. We can quantify the 

accuracy of an approximate solution sato a problem of minimizing some function fby the size of the 

relative error (re) of this approximation, 
 

 

𝑟𝑒 
 
(𝑠𝑎)= 

𝑓(𝑠𝑎)−𝑓(𝑠∗) 
 

 

𝑓(𝑠∗) 
Where s* is an exact solution to the problem. Alternatively, re(sa) = f (sa)/f (s*) − 1, we can simply 

use the accuracy ratio 

𝑟(𝑠𝑎 )=
𝑓(𝑠𝑎) 

𝑓(𝑠∗) 
Asameasureofaccuracyofsa.notethatforthesakeofscaleuniformity,theaccuracyratioof approximate 

solutions to maximization problems is usually computed as 

𝑟( 𝑠𝑎)= 
𝑓(𝑠∗) 

 
 

𝑓(𝑠𝑎) 
Tomakethisratiogreaterthanorequalto1,asitisforminimizationproblems.obviously,the 

Closer r(sa) is to 1, the better the approximate solution is. For most instances, however, we cannot 

compute the accuracy ratio, because we typically do not know f (s*), the true optimal value of the 

objective function. Therefore, our hope should liein obtaininga good upper bound on the values of 

r(sa). This leads to the following definitions. 

 

A polynomial-time approximation algorithm is said to be a c approximation algorithm, 

where c ≥ 1, if the accuracy ratio of the approximation it produces does not exceed c for any 

instance of the problem in question: r(sa) ≤ c. 

 

The best (i.e., the smallest) value of c for which inequality holds for all instances of the 

problem is called the performance ratio of the algorithm and denoted ra. 

The performance ratio serves as the principal metric indicating the quality of the 

approximation algorithm. We would like to have approximation algorithms with ra as close to 1as 

possible. Unfortunately, as we shall see, some approximation algorithms have infinitely large 

performance ratios (ra = ∞). This does not necessarily rule out using such algorithms, but it does 

call for a cautious treatment of their outputs. 

Approximationalgorithmsfornphardproblemsare: 

• Travelingsalesmanproblem(tsp) 

• Knapsackproblem 



  

 

 

 

 

 Travelingsalesmanproblem(approximationalgorithm) 

Greedy algorithms for the tsp the simplest approximation algorithms for the traveling 

salesman problem are based on the greedy technique. We will discuss here two such algorithms. 

1. Nearest-neighboralgorithm 

2. Minimum-spanning-tree–basedalgorithms 

 

 
Nearest-neighboralgorithm 

Thefollowingwell-knowngreedyalgorithmisbasedonthenearest-neighborheuristic: always go 

next to the nearest unvisited city. 

Step1chooseanarbitrarycityasthestart. 

Step 2 repeat the following operation until all the cities have been visited: go to the unvisited city 

nearest the one visited last (ties can be broken arbitrarily). 

Step3returntothestarting city. 

Example 1 for the instance represented by the graph in figure 5.20, with a as the starting vertex, the 

nearest-neighbor algorithm yields the tour (hamiltonian circuit) sa: a − b − c − d − a of length 10. 
 

Figure5.20 instanceofthetravelingsalesman problem. 

Theoptimalsolution,as canbeeasilycheckedbyexhaustive search,isthetours*:a−b− d−c–a 

Oflength 8.thus, the accuracyratio ofthis approximationis 
 

 

𝑟(𝑠𝑎 )=
𝑓(𝑠𝑎) 

𝑓(𝑠∗) 
=

10
=1.25 
8 

(i.e.,toursais25%longerthantheoptimaltours*). 

 
Multifragment-heuristicalgorithm 

Another natural greedy algorithm for the traveling salesman problem considers it as the 

problem of finding a minimum-weight collection of edges in a given complete weighted graph so 

that all the vertices have degree 2. 

Step 1 sort the edges in increasing order of their weights. (ties can be broken arbitrarily.) 

Initialize the set of tour edges to be constructed to the empty set. 

Step 2 repeat this step n times,wheren is thenumberofcitiesin theinstancebeingsolved: add 

the next edge on the sorted edge list to the set of tour edges, provided this addition 

does not create a vertex of degree 3 or a cycle of length less than n; otherwise, skip 

the edge. 

Step3returnthesetoftouredges. 

As an example, applying the algorithm to the graph in figure 5.20 yields {(a, b), (c, d), (b, 

c), (a, d)}.this set of edges forms the same tour as the one produced by the nearest-neighbor 

algorithm.ingeneral,themultifragment-heuristicalgorithmtendstoproducesignificantlybetter 



  

 

 

 

Tours thanthenearest-neighbor algorithm, as weare goingto seefrom the experimental dataquoted at 

the end of this section.but the performance ratio of the multifragment-heuristic algorithm is also 

unbounded, of course. 

There is, however, averyimportant subset of instances, called euclidean, forwhich we can 

make a nontrivial assertion about the accuracy of both the nearestneighbor and multifragment- 

heuristic algorithms. These are the instances in which intercity distances satisfy the following 

natural conditions: 

• Triangleinequality𝑑[𝑖,j]≤𝑑[𝑖,𝑘]+𝑑[𝑘,j]foranytripleofcitiesi,j,andk(thedistance between 

citiesiandjcannot exceed the length of a two-leg path fromito some intermediate city k 

to j ) 

• Symmetry𝑑[𝑖,j]=𝑑[j,𝑖]foranypairofcitiesiandj(thedistancefromitojisthesame as the 

distance from j to i) 

 
Minimum-spanning-tree–basedalgorithms 

There are approximation algorithms for the travelling salesman problem that exploit a 

connection between hamiltonian circuits and spanning trees of the same graph. Since removing an 

edge from a hamiltonian circuit yields a spanning tree, we can expect that the structure of a 

minimum spanning tree provides a good basis for constructing a shortest tour approximation. Here 

is an algorithm that implements this idea in a rather straightforward fashion. 

Twice-around-the-treealgorithm 

Step 1 construct a minimum spanning tree of the graph corresponding toa given instanceof 

the traveling salesman problem. 

Step 2 starting at an arbitrary vertex, perform a walk around the minimum spanning tree 

recording all the vertices passed by. (this can be done by a dfs traversal.) 

Step 3 scan the vertex list obtained in step 2 and eliminate from it all repeated occurrences 

of the same vertex except the starting one at the end of the list. (this step is 

equivalent to making shortcuts in the walk.) The vertices remaining on the list will 

form a hamiltonian circuit, which is the output of the algorithm. 

Example2 let usapplythis algorithmtothegraphin figure5.21a. Theminimumspanningtree 

ofthisgraphismadeupofedges (a,b), (b,c), (b, d),and (d,e)(figure5.21b).atwice-around-the- tree walk 

that starts and ends at a is a, b, c, b, d, e, d, b, a. Eliminating the second b (a shortcutfrom c to d), 

the second d, and the third b (a shortcut from e to a) yields the hamiltonian circuit a, b, c, d, e, a of 

length 39. 
 

Figure 5.21 illustration of the twice-around-the-tree algorithm. (a) graph. (b) walk around the 

minimum spanning tree with the shortcuts. 



  

 

 

 

 Knapsackproblem(approximationalgorithm) 

The knapsack problem is one well-knownnp-hard problem. Given n items of known weights 

w1, . . . , wn and values v1, . . . , vnand a knapsack of weight capacity w, find the most valuable 

subset of the items that fits into the knapsack. 

 
Greedyalgorithmsfortheknapsackproblem 

We can think of several greedy approaches to this problem. One is to select the items in 

decreasing order of their weights; however, heavier items may not be the most valuable in the set. 

Alternatively, if we pick up the items in decreasing order of their value, there is no guarantee that 

the knapsack’s capacity will be used efficiently. We find a greedy strategy that takes into account 

both the weights and values by computing the value-to-weight ratios vi/wi, i = 1, 2, . . . , n, and 

selecting the items in decreasing order of these ratios. Here is the algorithm based on this greedy 

heuristic. 

 
Greedyalgorithmforthediscreteknapsackproblem 

Step1computethevalue-to-weightratiosri=vi/wi,i=1,...,n,fortheitemsgiven. 

Step 2 sort the items in nonincreasing order of the ratios computed in step 1.(ties can be 

broken arbitrarily.) 

Step 3 repeat the following operation until no item is left in the sorted list: if the current 

item on the list fits into the knapsack, place it in the knapsack and proceed to thenext 

item; otherwise, just proceed to the next item. 

 

Example 1 let us consider the instance of the knapsack problem with the knapsack capacity 10 and 

the item information as follows: 

 

Item Weight Value 

1 4 $40 

2 7 $42 

3 5 $25 

4 3 $12 

Computing the value-to-weight ratios and sorting the items in non increasing order of these 

efficiency ratios yields 

 

Item Weight Value Value/weight Capacity 

1 4 $40 10 
 

W=10 
2 7 $42 6 

3 5 $25 5 

4 3 $12 4 

The greedy algorithm will select the first item of weight 4, skip the next item of weight 7, 

select the next item of weight 5, and skip the last item of weight 3. The solution obtained happensto 

be optimal for this instance. So the total items value in knapsack is $65. 

 
Greedyalgorithmforthecontinuousknapsackproblem 

Step1computethevalue-to-weightratios vi/wi,i=1,...,n,fortheitemsgiven. 

Step 2 sort the items in nonincreasing order of the ratios computed in step 1. (ties can be broken 

arbitrarily.) 

Step 3 repeat the following operation until the knapsack is filled to its full capacity or 

noitemisleftinthesortedlist:ifthe currentitemonthelistfitsintothe knapsackinits 



  

 

 

 

Entirety, take it and proceed to the next item; otherwise, take its largest fraction 

tofill the knapsack to its full capacity and stop. 

 

Example 2 a small example of an approximation scheme with k = 2 is provided. The algorithm yields 

{1, 3, 4}, which is the optimal solution for this instance. 

 

Item Weight Value Value/weight Capacity 

1 4 $40 10 
 

W=10 
2 7 $42 6 

3 5 $25 5 

4 1 $4 4 

 

Subset Addeditems Value 

{} 1, 3, 4 $69 

{1} 3, 4 $69 

{2} 4 $46 

{3} 1, 4 $69 

{4} 1, 3 $69 

{1, 2} Not feasible  

{1, 4} 4 $69 

{1, 4} 3 $69 

{2, 3} Not feasible  

{2, 4} - $46 

{3, 4} 1 $69 

For each of those subsets, it needs o(n) time to determine the subset’s possible extension. 

Thus, the algorithm’s efficiency is in o(knk+1). Note that although it is polynomial in n, the time 

efficiencyofsahni’s schemeis exponential in k. Moresophisticatedapproximation schemes,called 

fully polynomial schemes, do not have this shortcoming. 


